首页> 外文会议>Conference on three-dimensional and multidimensional microscopy: Image acquisition and processing >One-step Calibration of Specimen Induced Focal Shifts and Spherical Aberration for Quantitative 3D Microscopy: Approach and First Results
【24h】

One-step Calibration of Specimen Induced Focal Shifts and Spherical Aberration for Quantitative 3D Microscopy: Approach and First Results

机译:样本诱导焦平偏移的一步校准和定量3D显微镜的球面像差:方法和第一次结果

获取原文

摘要

With the advent of laser scanning confocal and multiphoton microscopy, 3D life tissue characterization has boon rendered possible. This involves the restoration of thick section images (in the depth range of 100 microns) of biological samples. In contrast to thin samples new effects become important when imaging thick samples: Because of changes of the refractive index across the specimen or the embedding medium, strong (> 1 micron) focal shifts and spherical aberration occur and scattering effects get more prominent. For tissue mapping it is essential to correct for such aberrations and distortion effects. In this paper, we propose a calibration framework, which allows us to determine thick section focal shifts and spherical aberrations in a one-step-procedure. Gradients in the focal shift induce a scaling in the Z-direction of the observed sample. A second effect arises with depth-dependent spherical aberration. We model our microscope as a linear-shift-NON-invariant system (LSNI) where multiple depth classes are assigned distinct point spread functions (PSFs). We measure these two effects in a 3D sample of randomly distributed fluorescent focal check beads. The beads are embedded in gelatine, a medium with high resemblance to real biological tissue. The PSF is approximated by a mathematical parametric model. While estimating the parameters of the PSF with object-constrained deconvolution, we track depth dependent changes of the observed bead diameter. This allows us to determine the gradient of the focal shift across a thick section. By numerical integration along the optical axis we obtain the focal shift values as a function of sample depth. In the end, these values will be applied as a correction to compensate depth distortions in the tissue images.
机译:随着激光扫描共焦和多光子显微镜的出现,3D寿命组织表征具有可能的广告。这涉及恢复厚截面图像(在100微米的深度范围)的生物样品。与薄样本相比,新效果变得厚的样品变得重要:由于样品上的折射率或嵌入介质的变化,强(> 1微米)焦平和球形畸变发生,散射效应变得更加突出。对于组织映射,对于这种像差和失真效应来说是必要的。在本文中,我们提出了一种校准框架,其允许我们在一步过程中确定厚部分焦平偏移和球面像差。焦平偏移中的梯度在观察样品的z方向上诱导缩放。依赖于深度的球面像差产生第二次效果。我们将显微镜造型为线性换档 - 非不变系统(LSNI),其中分配了多个深度类别的分配点扩展功能(PSF)。我们在随机分布的荧光焦点检查珠子的3D样本中测量这两种效果。珠子嵌入明胶中,其与真实生物组织相似的培养基。 PSF由数学参数模型近似。在估计具有物体受限的去卷积的PSF的参数的同时,我们跟踪观察到的珠子直径的深度依赖性变化。这使我们可以确定圆形截面焦点的梯度。通过沿光轴的数值积分,我们可以作为样品深度的函数获得焦距值。最后,这些值将被应用为校正以补偿组织图像中的深度失真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号