首页> 外文会议>ASME Pressure Vessels and Piping Conference >METHODOLOGY FOR THE EXPERIMENTAL ASSESSMENT OF TRUE STRESS-STRAIN CURVES AFTER NECKING EMPLOYING CYLINDRICAL TENSILE SPECIMENS: EXPERIMENTS AND PARAMETERS CALIBRATION
【24h】

METHODOLOGY FOR THE EXPERIMENTAL ASSESSMENT OF TRUE STRESS-STRAIN CURVES AFTER NECKING EMPLOYING CYLINDRICAL TENSILE SPECIMENS: EXPERIMENTS AND PARAMETERS CALIBRATION

机译:采用圆柱形拉伸试样的缩颈后真正应力 - 应变曲线实验评估方法:实验和参数校准

获取原文

摘要

Simulations and structural integrity evaluations including severe plasticity have undergone significant expansion during recent years (e.g. fracture mechanics FE models including ductile tearing and/or generalized yielding), which demand accurate true stress-strain data until fracture. This is a consequence of the use of high toughness ductile materials subjected to severe loadings and high levels of operational efficiency and optimization. However, tensile tests present one inconvenience when providing such data, since the occurrence of plastic instability (necking) complicates the direct assessment of true stress-strain curves until final fracture. Two main difficulties can be pointed out: i) the nonuniform geometry assumed by the cross sections along its length and; ii) the imposition of a complex triaxial stress state. The first occurrence can only be overcome by real-time physical measurements. The second occurrence demands a correction model to provide an equivalent stress including triaxial effects. Current authors recently demonstrated that even the well-known Bridgman's correction presents limitations, particularly for strains greater than ~ 0.50 - 0.60, which motivated proposals to better describe the geometrical evolution of necking minimizing the need for real-time physical measurements [1]. As a new step in this direction, this work presents three key contributions: i) first, experiments regarding the geometrical evolution of necking were largely extended incorporating 10 materials to corroborate the validity of the recently proposed model (including Carbon, stainless steels and copper); ii) second, and for the same materials, the necking region was investigated in more details to verify to which extent an osculating circle well describes the high deformation region. A new model could be proposed to better support future solid mechanics analyses regarding equilibrium and stress/strain fields; iii) finally, a modified Bridgman's model is proposed, followed by recommended practices for testing. The results provide further support to σ-ε assessment considering severe plasticity and demanding less physical measurements.
机译:在近年来,包括严重塑性的模拟和结构完整性评估经历了显着的扩张(例如,骨折力学Fe模型,包括韧性撕裂和/或广义屈服),需求准确的真实应力 - 应变数据直到骨折。这是使用经受严重载荷的高韧性延性材料和高水平的运行效率和优化。然而,拉伸试验在提供这种数据时存在一个不便,因为塑料不稳定性(缩颈)的发生使真正应激曲线的直接评估使直至最终骨折。可以指出两个主要困难:i)沿其长度和横截面承担的非均匀几何。 ii)施加复杂的三轴应力状态。第一次出现只能通过实时物理测量来克服。第二种发生要求校正模型提供等同的应力,包括三轴效应。目前的作者最近证明,即使是众所周知的Bridgman的矫正也会提出局限性,特别是对于大于〜0.50-60-60的菌株,这是为了更好地描述颈颈的几何演化最小化实时物理测量的需要[1]。作为朝这个方向迈出新步伐,这项工作提出了三个重要的贡献:1)首先,实验有关的缩颈在很大程度上扩大纳入10种材料,以证实最近提出的模型的有效性(包括碳,不锈钢和铜)的几何变化; ii)第二,对于相同的材料,更详细地研究了颈缩区域,以验证在哪个范围内循环阱很好地描述了高变形区域。可以提出一种新模型,以更好地支持关于平衡和应力/应变场的未来固体力学分析; III)最后,提出了改进的Bridgman的模型,然后是测试的推荐实践。结果为考虑严重的可塑性和要求更少的物理测量,进一步支持σ-ε评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号