首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >RADIATIVE TRANSPORT AND HYDRODYNAMIC MODELING OF MICROALGAE PHOTOSYNTHESIS IN BIO-FLOW REACTORS
【24h】

RADIATIVE TRANSPORT AND HYDRODYNAMIC MODELING OF MICROALGAE PHOTOSYNTHESIS IN BIO-FLOW REACTORS

机译:生物流动反应器中微藻光合作用的辐射运输与流体动力学建模

获取原文
获取外文期刊封面目录资料

摘要

A simplified two-phase flow PCH (physicochemical hydrodynamics) model is developed for modelling and simulation of microalgae growth in bio-flow reactor. The model considers carbon balance through coupled gas-phase and liquid-phase transport equations. The transport model accounts for interfacial transport of CO_2 from gas bubble/slug to liquid, and microalgae photosynthesis reactions. A simplified photosynthesis reaction is adopted in the model, which assumes a pseudo-first order reaction for glucose pathway. The reaction rate is calculated assuming that it is proportional to the solar absorption rate by microalgae in the liquid. The reaction model also includes a simplified photoinhibition sub-model which assumes that the rate of photoinhibition is proportional to the square-root of solar irradiation reaching the algae cell. The Beer-Lambert law is used to calculate the radiative transfer of solar flux in seeded microalgae liquid flow. Analytical solution was obtained for single-channel bio-flow reactor. Decrease of the CO_2 concentration in gas bubble/slug and in liquid flow is assumed to be the result of the microalgae growth in bio-flow reactor. Two efficiency parameters are defined: CO_2 conversion efficiency and photosynthesis efficiency. The conversion efficiency is calculated based on the decrease of CO_2 between the bio-flow reactor inlet and exit. The photosynthesis efficiency is based upon the heating value of microalgae yield versus solar irradiation. The rate of microalgae yield is calculated by multiplying the mass stoichiometric coefficient of photosynthesis reaction to CO_2 consumption rate. Model analysis provided some insight of the microalgae formation in bio-flow reactor as interpreted from the PCH-coupled photosynthesis model that includes a dimensionless number as a potential scaling parameter for gas-phase only CO_2 supply operation; photosynthesis efficiency increases with increasing CO_2 molar concentration (i.e., number of moles per unit volume) at the reactor inlet for both gas-phase and liquid-phase only CO_2 supply; an optimal irradiation flux for maximum photosynthesis efficiency - a factor to consider should artificial light source be used for harvesting algae.
机译:一种简化的两相流PCH(物理化学水动力学)模型是开发用于生物流动反应器中微藻生长的建模和模拟。该模型通过耦合的气相和液相传输方程来考虑碳平衡。运输模型占CO_2从气泡/粘合剂到液体的界面传输,以及微藻光合反应。模型中采用了简化的光合作用反应,该模型采用了葡萄糖途径的伪第一阶反应。假设它与液体中微藻的太阳能吸收速率成比例计算反应速率。反应模型还包括简化的光抑制子模型,该子模型假设光抑制率与到达藻类细胞的太阳照射的平方根成比例。啤酒兰伯特法律用于计算种子微藻液体流动中太阳能通量的辐射转移。获得分析溶液,用于单通道生物流动反应器。假设气泡/块和液体流动中的CO_2浓度的降低是生物流动反应器中微藻生长的结果。定义了两个效率参数:CO_2转换效率和光合效率。基于生物流量反应器入口与出口之间的CO_2减小来计算转换效率。光合效率基于微藻产率与太阳照射的加热值。通过将质量化学计量反应乘以CO_2消耗率来计算微藻产率的速率。模型分析提供了生物流量反应器中微藻形成的一些识别,从PCH耦合的光合作用模型中解释,包括无量纲数量作为仅用于气相的潜在缩放参数CO_2供应操作;光合作用效率随着用于气相和液相仅CO_2供应的反应器入口的CO_2摩尔浓度(即每单位体积的摩尔数量的摩尔数量)增加而增加;最大光合作用效率的最佳辐射通量 - 需要考虑的因素,应该用于收获藻类的人造光源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号