首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >NUCLEATE BOILING OF DIELECTRIC LIQUIDS ON HYDROPHOBIC AND HYDROPHILIC SURFACES
【24h】

NUCLEATE BOILING OF DIELECTRIC LIQUIDS ON HYDROPHOBIC AND HYDROPHILIC SURFACES

机译:在疏水性和亲水表面上的介电液体的核心沸腾

获取原文

摘要

An experimental study was conducted to investigate the effect of hydrophobic, hydrophilic and mixed hydrophobic/hydrophilic surfaces in nucleate boiling heat transfer. A dielectric liquid, HFE-7100, was used as the working fluid in the saturated boiling tests. A total of 12 test samples were used in this study, featuring four types of boiling surfaces with a common copper substrate; (1) plain, smooth copper surface (as reference), (2) hydrophobic patterned or fully-covered surface, (3) hydrophilic patterned or fully-covered surface, and (4) mixed hydrophobic/hydrophilic patterned surface. All test samples were prepared on 10 mm × 10 mm × 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The fabrication of hydrophobic surfaces involved common photolithography techniques to apply 100 μm thick Teflon layer. Hydrophilic surfaces were prepared by depositing a TiO_2 layer through a two-step process involving layer by layer self-assembly (L-B-L) and liquid phase deposition (L-P-D) techniques. Test samples with the mixed hydrophobic/hydrophilic surfaces were obtained by first applying Teflon hydrophobic patterns, and then by covering the remaining substrate area with hydrophilic coating. The effect of pattern and pitch size was investigated by varying the circular pattern dimensions between 40, 100 and 250 μm and corresponding pitch dimensions between 80, 200 and 500 μm. The results indicated that hydrophobic and hydrophilic surfaces have distinct benefits, and mixed hydrophobic/hydrophilic surfaces offer an optimum performance enhancement, providing: (a) early transition to boiling regime with no temperature overshoot at boiling incipience, (b) up to 10.6 kW/m~2°C HTC (representing 82% increase), and (c) up to 28 W/cm~2 CHF level (representing 47% increase). The studied enhanced surfaces therefore demonstrated a practical surface modification method for heat transfer enhancement in immersion cooling applications.
机译:进行了实验研究以研究疏水性,亲水和混合疏水/亲水性表面在核心沸腾热传递中的影响。使用介电液体HFE-7100作为饱和沸点测试中的工作流体。本研究共使用12种测试样品,具有四种类型的沸点,具有共同的铜基材; (1)平滑,光滑的铜表面(作为参考),(2)疏水图案或全覆盖的表面,(3)亲水图案或完全覆盖的表面,(4)混合疏水/亲水图案化表面。所有测试样品在10mm×10mm×2mm的铜基板上制备,其中匹配尺寸厚膜电阻器连接到相对侧,以产生热量并模拟高热量通量电子器件。疏水表面的制造涉及施加100μm厚的Teflon层的常见光刻技术。通过通过层自组装(L-B-L)和液相沉积(L-P-D)技术涉及层的两步过程沉积TiO_2层来制备亲水性表面。通过首先施加Teflon疏水性图案获得具有混合疏水/亲水性表面的测试样品,然后通过用亲水涂层覆盖剩余的衬底区域。通过改变40,100和250μm的圆形图案尺寸和80,200和500μm之间的相应间距尺寸来研究图案和间距尺寸的效果。结果表明,疏水性和亲水性表面具有明显的益处,混合疏水/亲水性表面提供了最佳的性能增强,提供:(a)早期过渡到沸腾的状态,没有温度过冲在沸腾浓度下,(b)高达10.6 kW / M〜2°C HTC(增加82%),(C)高达28W / cm〜2 CHF水平(表示增加47%)。因此,研究的增强表面表明了浸没式冷却应用中的传热增强的实用表面改性方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号