首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >HYBRID POLYMER ADDITIVE MANUFACTURING OF A DARRIEUS TYPE VERTICAL AXIS WIND TURBINE DESIGN TO IMPROVE POWER GENERATION EFFICIENCY
【24h】

HYBRID POLYMER ADDITIVE MANUFACTURING OF A DARRIEUS TYPE VERTICAL AXIS WIND TURBINE DESIGN TO IMPROVE POWER GENERATION EFFICIENCY

机译:达里斯型垂直轴风力涡轮机设计的混合聚合物添加剂制造,提高发电效率

获取原文

摘要

Utilizing the advantages of additive manufacturing methods, redesigning, building and testing of an existing integral Savonius/Darrieus "Lenz2 Wing" style vertical axis wind turbine is predicted to improve power generation efficiency. The current wind turbine blades and supports made from aluminum plate and sheet are limiting the power generation due to the overall weight. The new design is predicted to increase power generation when compared to the current design due to the lightweight spiral Darrieus shaped hollow blade made possible by 3D printing, along with an internal Savonius blade made from aluminum sheet and traditional manufacturing techniques. The design constraints include 3D printing the turbine blades in a 0.4 × 0.4 × 0.3 m work envelope while using a Stratasys Fortus 400mc and thus the wind turbine blades are split into multiple parts with dovetail joint features, when bonded together result in a 1.2 m tall working prototype. Appropriate allowance in the mating dovetail joints are considered to facilitate the fit and bonding, as well as angle, size and placement of the dovetail to maximize strength. The spiral shape and Darrieus style cross section of the blade that provides the required lift enabling it to rotate from the static condition are oriented laterally for 3D printing to maximize strength. The bonding of the dovetail joints is carried out effectively using an acetone solution dip. The auxiliary components of the wind turbine which include the center support pole, top and bottom support, and center Savonius blades are manufactured using lightweight aluminum. Design features are included in the 3D printed blade parts so that they can be assembled with the aluminum parts in bolted connections. Analysis of the 3D CAD models show that the hybrid aluminum and hollow 3D printed blade construction provides a 50% cost savings over a 3D printed fully solid blade design while minimizing weight and maximizing the strength where necessary. Analysis of the redesign includes a detailed weight comparison, structural strength and the cost of production. Results include linear static finite element analysis for the strength in dovetail joint bonding and the aluminum to 3D printed connections. Additional data reported are the time frame for the design and manufacturing of the system, budget, and an operational analysis of the wind turbine with concern for safety. Results are analyzed to determine the advantages in utilizing a hybrid additive manufacturing and aluminum construction for producing a more efficient vertical axis wind turbine. Techniques used in the production of this type of wind turbine blade are planned to be utilized in similar applications such as a lightweight hovercraft propeller blade design to be tested in future research projects.
机译:预测利用加性制造方法的优点,预测,建筑和测试现有的整体救济/达里斯“Lenz2 Wing”纵轴风力涡轮机预测为提高发电效率。当前的风力涡轮机叶片和由铝板和片材制成的支撑件限制由于总重量引起的发电。预计新设计预计与电流设计相比,由于3D打印使得可实现的轻质螺旋Darrius形空心叶片,以及由铝板和传统制造技术制成的内部救生叶片。设计约束包括3D打印0.4×0.4×0.3米工作包络中的涡轮机叶片,同时使用Stratasys Fortus 400MC,因此,风力涡轮机叶片分成多个部件,随着燕尾的关节特征,当粘合在一起时,将其粘合在一起的1.2米高工作原型。相配在配合燕尾榫接头中的适当余量被认为是促进燕尾榫的拟合和粘合,以及角度,尺寸和放置来最大化强度。提供所需升降的螺旋形状和Darrius风格横截面,使其能够从静态条件旋转,以横向为3D打印以最大化强度。使用丙酮溶液浸渍有效地进行燕尾接头的键合。包括中心支撑杆,顶部和底部支撑的风力涡轮机的辅助部件和中心救星叶片是使用轻质铝制造的。设计功能包括在3D印刷刀片部件中,使它们可以与螺栓连接的铝部件组装在一起。 3D CAD模型的分析表明,混合铝和空心3D印刷刀片结构在3D印刷完全固体刀片设计上提供50%的成本节省,同时最小化重量并在必要时最大化强度。重新设计的分析包括详细的重量比较,结构强度和生产成本。结果包括线性静态有限元分析,用于燕尾榫接头和铝为3D印刷连接。报告的其他数据是系统,预算的设计和制造的时间框架,以及风力涡轮机与安全性的关注。分析了结果以确定利用混合添加剂制造和铝结构来生产更有效的垂直轴风力涡轮机的优点。计划在这种类型的风力涡轮机叶片生产中使用的技术用于在类似的应用中使用,例如在未来的研究项目中进行测试的轻质气垫船螺旋桨刀片设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号