首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >A COMPARISON OF RUNGE KUTTA AND NOVEL L-STABLE METHODS FOR REAL-TIME INTEGRATION METHODS FOR DYNAMIC SUBSTRUCTURING
【24h】

A COMPARISON OF RUNGE KUTTA AND NOVEL L-STABLE METHODS FOR REAL-TIME INTEGRATION METHODS FOR DYNAMIC SUBSTRUCTURING

机译:动态子结构实时集成方法的跑步库与新型L稳定方法的比较

获取原文

摘要

In this paper we compare the performance of Runge-Kutta and novel L-stable real-time (LSRT) integration algorithms for real-time dynamic substructuring testing. Substructuring is a hybrid numerical-experimental testing method which can be used to test critical components in a system experimentally while the remainder of the system is numerically modelled. The physical substructure and the numerical model must interact in real time in order to replicate the behavior of the whole (or emulated) system. The systems chosen for our study are mass-spring-dampers, which have well known dynamics and therefore we can benchmark the performance of the hybrid testing techniques and in particular the numerical integration part of the algorithm. The coupling between the numerical part and experimental part is provided by an electrically driven actuator and a load cell. The real-time control algorithm provides bi-directional coupling and delay compensation which couples together the two parts of the overall system. In this paper we consider the behavior of novel L-stable real-time (LSRT) integration algorithms, which are based on Rosenbrock's method. The new algorithms have considerable advantages over 4th order Runge-Kutta in that they areunconditionally stable, real-time compatible and less computationally intensive. They also offer the possibility of damping out unwanted high frequencies and integrating stiff problems. The paper presents comparisons between 4th order Runge-Kutta and the LSRT integration algorithms using three experimental configurations which demonstrate these properties.
机译:在本文中,我们可以比较Runge-Kutta和新型L稳定实时(LSRT)集成算法的性能进行实时动态子结构测试。子结构是一种混合数值实验测试方法,可用于通过实验在系统中测试系统中的关键组件,而系统的其余部分是在数值上进行的。物理子结构和数值模型必须实时交互,以便复制整个(或仿真)系统的行为。为我们的研究选择的系统是具有众所周知的动态的质量弹簧阻尼器,因此我们可以基准混合测测试技术的性能,特别是算法的数值积分部分。数值部分和实验部分之间的耦合由电驱动的致动器和称重传感器提供。实时控制算法提供了双向耦合和延迟补偿,其整体系统的两部分耦合在一起。在本文中,我们考虑了基于Rosenbrock方法的新型L稳定实时(LSRT)集成算法的行为。新的算法在第4阶runge-Kutta中具有相当大的优点,因为它们不适当地稳定,实时兼容,更少计算密集。他们还提供了阻尼不需要的高频和整合僵硬问题的可能性。本文介绍了第4阶runge-Kutta和使用三种实验配置的LSRT集成算法的比较,这证明了这些属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号