首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >DYNAMIC BEHAVIOR OF A SOLID OXIDE STEAM ELECTROLYZER SYSTEM USING TRANSIENT PHOTOVOLTAIC GENERATED POWER FOR RENEWABLE HYDROGEN PRODUCTION
【24h】

DYNAMIC BEHAVIOR OF A SOLID OXIDE STEAM ELECTROLYZER SYSTEM USING TRANSIENT PHOTOVOLTAIC GENERATED POWER FOR RENEWABLE HYDROGEN PRODUCTION

机译:用于可再生氢气生产瞬态光伏发电的固体氧化物蒸汽电解槽的动态行为

获取原文

摘要

The purpose of this study is to investigate the dynamic behavior of a Solid Oxide Steam Electrolyzer (SOSE) system without an external heat source which uses transient photovoltaic (PV) generated power as an input to produce compressed (to 3MPa) renewable hydrogen to be injected directly into the natural gas network. A cathode-supported crossflow planar Solid Oxide Electrolysis (SOE) cell is modeled in a quasi-3D thermo-electrochemical model that spatially and temporally simulates the performance of a unit cell operating dynamically. The stack is comprised of 2500 unit cells that are assumed to be assembled into identically operating stacks, creating a 300kW electrolyzer stack module. A 15-minute resolution dataset for operation of PV generation was obtained from a database that archives PV power dynamics of systems on the University of California, Irvine campus. The dataset (comprised of data for approximately 4.1 MW of peak solar power) was scaled to a maximum of 450kW of PV generation. For the designed 300kW SOSE stack (thermoneutral voltage achieved at design steady state conditions), powered by the dynamic 0-450kW output of PV systems, thermal management and balancing of all heat supply and cooling demands is required based upon the operating voltage to enable efficient operation and prevent degradation of the SOSE stacks. The PV generation dataset was analyzed to obtain a day in which the PV generated power has its highest dynamic behavior (a cloudy day) and another day in which the PV generated power and energy is maximum (a sunny day). Dynamic system simulation results show that the SOSE system is capable of following the dynamic PV generated power for both of these days while the SOSE stack temperature gradient is always maintained below a maximum set point along the stack for both days. The system efficiency based upon lower heating value of the generated hydrogen is between 0-75% and 0-78% with daily hydrogen production of 94kg and 55kg for sunny and cloudy days, respectively.
机译:本研究的目的是调查固体氧化物蒸汽电解(SOSE)系统的动态行为,而无需其使用产生的电力作为输入瞬态光伏(PV)的外部热源以产生压缩(至3MPa的)的可再生氢被注入直接进入天然气网络。一种阴极支持横流平面固体氧化物电解(SOE)细胞是在准三维热电化学模型建模的空间和时间上模拟动态操作的单元电池的性能。堆栈是由被假定为被组装成相同操作叠堆2500的单元电池的,创造了300kW的电解槽堆模块。从数据库中获得了光伏发电装置的动作的15分钟分辨率数据集的加州大学欧文分校的校园系统档案光伏发电动力。数据集(包括数据的大约4.1兆瓦的峰值的太阳能发电的)中的溶液将其缩放到最大光伏发电的450KW的。对于设计的300kW SOSE堆(适温电压在设计稳态条件下实现),搭载的光伏系统,热管理的动态0-450kW输出和所有热供应的平衡和冷却需求,需要基于操作电压以实现高效操作和防止SOSE栈的降解。的光伏发电集进行分析,以获得天,其中PV发电电力有其最高动态行为(阴天)和另一天,其中PV发电功率和能量是最大(晴天)。动态系统的仿真结果表明,该SOSE系统能够跟随动态PV发电电力为这两个天而SOSE堆温度梯度始终保持在低于沿着堆叠两个天的最大设定点。基于所生成的氢的低热值系统效率是0-75%,并用分别每日制氢94公斤和55公斤为晴天和阴天,0-78%之间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号