首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >A COMPARISON OF SMOOTHED PARTICLE HYDRODYNAMICS (SPH) AND COUPLED SPH-FEM METHODS FOR MODELING MACHINING
【24h】

A COMPARISON OF SMOOTHED PARTICLE HYDRODYNAMICS (SPH) AND COUPLED SPH-FEM METHODS FOR MODELING MACHINING

机译:平滑粒子流体动力学(SPH)和耦合SPH-FEM方法的比较加工

获取原文

摘要

Smoothed Particle Hydrodynamics (SPH), a particle-based, meshless method originally developed for modeling astrophysi-cal problems, is being increasingly used for modeling fluid mechanics and solid mechanics problems. Due to its advantages over grid-based methods in the handling of large deformations and crack formation, the method is increasingly being applied to model material removal processes. However, SPH method is computationally expensive. One way to reduce the computational time is to partition the domain into two parts where, the SPH method is used in one segment undergoing large deformations and material separation and in the second segment, the conventional finite element (FE) mesh is used. In this work, the accuracy of this SPH-FEM approach is investigated in the context of orthogonal cutting. The high deformation zone (where chips form and curl) is meshed with the SPH method, while the rest of the workpiece is modeled using the FE method. At the interface, SPH particles are coupled with FE mesh for smooth transfer of stress and displacement. The boundary conditions are applied to tool and FE zone of the work-piece. For comparison purposes, a fullv-SPH model (workpiece fully discretized by SPH) is also developed. This is followed by a comparison of the results from the coupled SPH-FE model with the SPH model. A comparison of the chip profile, the cutting force, the von Mises stress and the damage parameter show that the coupled SPH-FE model reproduces the SPH model results accurately. However, the SPH-FE model takes almost 40% less time to run, a significant gain over the SPH model. Similar reduction in computation time is observed for in a micro-cutting application (depth of cut of 300 run). Based on these results, it is concluded that coupling SPH with FEM in machining models decreases simulation time significantly while still producing accurate results. This observation suggests that three-dimensional machining problems can be modeled using the combined SPH-FEM approach without sacrificing accuracies.
机译:平滑粒子流体动力学(SPH),最初用于建模天空性问题的粒子,基于毫米布的方法,越来越多地用于建模流体力学和固体力学问题。由于其优于基于网格的方法,在处理大变形和裂缝形成时,该方法越来越多地应用于模型材料去除过程。但是,SPH方法是计算昂贵的。减少计算时间的一种方法是将域分为两个部分,其中SPH方法用于一个经历大变形和材料分离和在第二段中的一个段中,使用传统的有限元(FE)网格。在这项工作中,在正交切割的背景下研究了这种SPH-FEM方法的准确性。用SPH方法啮合高变形区(其中碎片形式和卷曲),而使用Fe方法建模其余工件。在界面处,SPH颗粒与Fe网格耦合,以平稳地转移应力和位移。边界条件适用于工件的工具和Fe区。为了比较目的,还开发了全佛SPH模型(由SPH完全离散的工件)。然后通过使用SPH模型与耦合的SPH-FE模型的结果进行比较。芯片轮廓,切割力,von误判和损伤参数的比较表明,耦合的SPH-FE模型精确再现SPH模型的结果。然而,SPH-FE模型在跑步时几乎时间较少40%,在SPH模型上具有显着的增益。在微切换应用中观察到计算时间的类似减少(300次跑的截止深度)。基于这些结果,得出结论,在加工模型中具有有限元的耦合SPH显着降低模拟时间,同时仍然产生准确的结果。该观察表明,可以使用组合的SPH-FEM方法建模三维加工问题而不会牺牲精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号