首页> 外文会议>International Mechanical Engineering Congress and Exposition >DEEP LEARNING FOR INTELLIGENT BUBBLE SIZE DETECTION IN THE SPALLATION NEUTRON SOURCE VISUAL TARGET
【24h】

DEEP LEARNING FOR INTELLIGENT BUBBLE SIZE DETECTION IN THE SPALLATION NEUTRON SOURCE VISUAL TARGET

机译:深度学习智能气泡尺寸检测介绍中子源视觉目标

获取原文

摘要

The Spoliation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) will undergo proton power upgrade (PPU), increasing the proton beam power from 1.4 MW to 2.8 MW. From 2.8 MW, 2.0 MW will go to the current First Target Station and the rest will go to the future Second Target Station (STS). The First Target Station uses a liquid mercury target that is contained in a 316L stainless steel vessel. The proton beam is pulsed at 60 Hz, with a pulse of about 0.7μs. When the proton beam hits the target, the intense energy deposition leads to a rapid rise in temperature in the mercury. This temperature rise creates pressure waves that propagate through the mercury and cause cavitation erosion. The power upgrade will cause stronger pressure waves that will further increase damage because of cavitation. Injecting small helium bubbles in the mercury has been an efficient method of mitigating the pressure wave at 1.4 MW. However, at higher power, additional mitigation is necessary. Therefore, the 2 MW target vessel will be equipped with swirl bubblers and an additional gas injection port near the nose to inject more gas in the target. To develop a gas injection strategy and design, flow visualization in water with a transparent prototypical target ("visual target") was performed. Bubble sizes and their spatial distribution in the flow loop are crucial to understanding the effectiveness of the bubbles intarget under varied conditions of input pressures with helium and air. Images were captured using a high-speed camera at varied frame rates at different positions away from the swirl bubbler and different depths in the flow loop under varying lighting conditions. Initially, methods such as circular Hough transforms were applied after a series of images processing to obtain a general distribution of bubble sizes. Bubbles smaller than 500 μm are preferred to effectively mitigate the effect of pressure waves, which demands an accurate bubble detection and sizing system. Intelligent detection and identification of bubble sizes alleviate misdetection and improves accuracies. Employing neural networks, intelligent detection of bubble sizes and their distribution was developed and provides a robust alternative to traditional techniques. Human intervention was employed to label in-focus and out-of-focus bubbles in the set of training images. An object detection network using a pretrained convolutional neural network was created that extracted the features from the training images. Data augmentation was used to improve network accuracy through a random transformation of the original data.
机译:橡木岭国家实验室(ORNL)的Spolizial中子源(SNS)将经过质子电源升级(PPU),将质子束功率从1.4 mW增加到2.8兆瓦。从2.8 MW,2.0 MW将转到当前的第一目标站,其余部分将转到未来的第二个目标站(STS)。第一目标站使用包含在316L不锈钢容器中的液体汞靶。质子束以60Hz脉冲,脉冲约为0.7μs。当质子束撞击目标时,强度沉积导致汞温度的快速上升。这种温度升高会产生通过汞和引起空化腐蚀的压力波。电源升级将导致更强的压力波,这将进一步增加由于空化而损坏。在汞中注入小氦气泡沫是一种有效的方法,可以减轻1.4兆瓦的压力。但是,在更高的力量下,需要额外的缓解。因此,2 MW靶血管将配备有旋流器和靠近鼻子附近的额外气体注入口,以注入目标中的更多气体。为了开发气体喷射策略和设计,进行透明原型靶(“视觉目标”)的水中的流动可视化。气泡尺寸及其流量回路的空间分布对于了解气泡的有效性至关重要在具有氦气和空气的输入压力的各种条件下靶向。在不同位置处的不同位置的高速摄像机以不同的位置的不同位置的不同位置捕获图像,在不同的照明条件下的流动回路中的不同深度。最初,在一系列图像处理之后施加诸如圆形霍夫变换的方法,以获得气泡尺寸的一般分布。小于500μm的气泡是优选的,以有效地减轻压力波的影响,这需要精确的气泡检测和施胶系统。智能检测和泡沫尺寸的识别减轻误解并提高了精度。开发了采用神经网络,智能检测和其分布的智能检测,并提供了传统技术的强大替代方案。人类干预被用来在培训图像集中标记焦点和焦焦泡泡。创建了使用佩带的卷积神经网络的对象检测网络,从训练图像中提取了特征。数据增强用于通过原始数据的随机转换来提高网络精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号