首页> 外文会议>International Mechanical Engineering Congress and Exposition >INNOVATIVE THERMAL MANAGEMENT CONTROL TO SURMOUNT CHALLENGES OF EXPLORING OCEAN WORLDS ON EUROPA AND ENCELADUS
【24h】

INNOVATIVE THERMAL MANAGEMENT CONTROL TO SURMOUNT CHALLENGES OF EXPLORING OCEAN WORLDS ON EUROPA AND ENCELADUS

机译:创新的热管理与控制越野挑战探索海洋世界欧罗巴和Enceladus

获取原文

摘要

Probes to penetrate the thick ice shells of our solar system's Ocean Worlds have been studied for nearly 20 years, since scientific evidence strongly suggested a subsurface ocean on the Jupiter moon called Europa. There is keen scientific interest in exploring four significant themes on such proposed missions: 1) Geodynamics, 2) Geochemistry, 3) Habitability, and 4) Life Detection. The ice shells of Ocean Worlds are predicted to be up to 40 km thick; they exhibit extreme thermal environments, with ice temperatures from 100 K to 270 K, and extreme pressure environments from vacuum to 53 MPa. Jet Propulsion Laboratory has conducted a broad-look investigation of proposed mission concepts to Europa to identify the significant technology and operational challenges of Europa ice-penetration. The thermal-mechanical system (TMS) of an ice penetration probe (IPP) mission concept designed to access the ocean of an icy moon using radioisotope thermoelectric generators for heat and power faces technological hurdles exacerbated by severe thermal and volume constraints. This study identified thermal management and control (TMC) challenges that are strongly linked to: ice penetration start-up, mobility and navigation in the ice, communications while in the ice sheet, and detecting and avoiding in-ice hazards. The major objectives of the TMC system are: 1) Absorb internal thermal energy from the IPP radioisotope power source, 2) Maintain liquid water conditions around the IPP at all times, 3) Manage and control thermal flows from probe nose to tail, and 4) Provide pressure containment for all internal probe components. This work discusses the baseline TMC system architecture and design developed to accomplish these objectives, and survive and transit the extreme ice thicknesses in pursuit of Icy/Ocean Worlds science goals. The proposed TMC system consisting of an internal pumped two-phase fluid loop "thermal bus" for thermal energy capture, variable conductance heat pipe system for passively adaptive thermal energy transport around the probe, and water jetting system for ice cutting is described and discussed. Critical testing performed to date is described.
机译:为了穿透太阳系海洋世界的厚冰壳的探针已经研究了近20年,因为科学证据强烈建议了木星月亮的地下海洋称为Europa。敏锐的科学兴趣探索四项重要主题,如拟议的任务:1)地球动力学,2)地球化学,3)居住地和4)寿命检测。海洋世界的冰贝壳预计厚达40公里;它们表现出极端的热环境,冰温度从100 k到270 k,真空到53MPa的极端压力环境。喷气推进实验室对欧罗巴拟议的特派团概念进行了广泛的调查,以确定欧罗巴冰渗透的重要技术和运营挑战。冰渗透探头(IPP)的热机械系统(TMS)任务概念旨在使用放射性同位素的热电发电机进行冰冷的月亮的海洋,用于热量和功率,通过严重的热和体积限制加剧了技术障碍。本研究确定了与:冰渗透启动,移动性和导航在冰盖中的热管理和控制(TMC)挑战,以及在冰盖中的通信,以及检测和避免冰危险。 TMC系统的主要目的是:1)吸收IPP放射性电源电源的内部热能,2)始终保持IPP周围的液态水条件,3)从探针鼻部到尾部管理和控制热流,4 )为所有内部探头组件提供压力储量。这项工作讨论了基线TMC系统架构和设计制定的,以实现这些目标,并在追求冰冷/海洋世界科学目标中存活和过境极端冰厚度。所提出的TMC系统由用于热能捕获的内部泵浦的两相流体回路“热总线”,用于围绕探头的被动式传导热管系统,以及用于冰切割的水喷射系统的可变导电热管系统。描述了迄今为止执行的关键测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号