首页> 外文会议>ASME Annual Meeting >MODELING THE INITIAL STATE OF A MATERIAL AND ITS EFFECT ON FURTHER DEFORMATION
【24h】

MODELING THE INITIAL STATE OF A MATERIAL AND ITS EFFECT ON FURTHER DEFORMATION

机译:建模材料的初始状态及其对进一步变形的影响

获取原文

摘要

We consider a strain rate and temperature dependent, large deformation plasticity model in which two internal variables have been introduced to describe the state of the material. A scalar variable is introduced to describe the isotropic hardening or change in radius of the yield surface, while a tensor variable is introduced to describe any anisotropic hardening. The evolution equations for both variables is cast in a hardening minus recovery format, and an analytic solution can be determined for each variable for the case of isothermal constant true strain rate. We utilize these analytic solutions in conjunction with reverse loading data to determine the parameters for the model. We then investigate whether these material properties for an annealed material can be used to model the behavior of a rolled plate. Many materials exhibit a Bauschinger effect, that is an apparent softening upon load reversal. The Bauschinger effect has been shown to strongly depend upon the definition of yield stress. For a small strain offset yield, the material appears to exhibit a large Bauschinger effect, and as the strain offset definition of yield is increased the material appears to harden more isotropically. In this paper we utilize reverse loading data to determine the independent growth and saturation of the two tensor variables. Reverse loading tests at various strain levels were conducted on OFHC copper. From these tests, values of both state variables could be determined at the various strain levels. The parameters of the model are then determined utilizing the analytic solution for each variable and a nonlinear regression analysis. Having determined the parameters for an annealed material, we then model the rolling of a tapered plate to determine the non uniform state of the plate. These initial values are then utilized to investigate the effect of the non uniformity of state on reloading of compression specimens which were machined out of the plate in the rolling direction.
机译:我们考虑一种应变率和温度依赖性,大变形可塑性模型,其中引入了两个内部变量来描述材料的状态。引入标量变量以描述屈服表面的各向同性硬化或变化,而引入张量变量以描述任何各向异性硬化。两个变量的演化方程以硬化负恢复格式铸造,并且可以针对等温恒定的真实应变率的情况下确定每个变量的分析解决方案。我们将这些分析解决方案结合使用了反向加载数据来确定模型的参数。然后,我们研究了退火材料的这些材料特性是否可用于模拟轧制板的行为。许多材料表现出Bauschinger效应,这是在负荷逆转时表观软化。 Bauschinger效应已被证明强烈取决于产量应激的定义。对于小的应变偏移产率,材料似乎表现出大的Bauschinger效应,随着产率的应变偏移定义增加,材料似乎使得更加异常地硬化。在本文中,我们利用反向加载数据来确定两个张量变量的独立生长和饱和度。在OFHC铜上进行各种应变水平的反向加载试验。根据这些测试,可以在各种应变级别确定态变量的值。然后利用每个变量和非线性回归分析确定模型的参数和非线性回归分析。确定了退火材料的参数,然后我们模拟圆锥板的滚动以确定板的非均匀状态。然后利用这些初始值来研究不均匀的状态对压缩样品的重新装载的影响,该压缩样品在滚动方向上从板中加工。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号