首页> 外文会议>Conference on ultrahigh- and high-speed photography, videography and photonics >Development and operation of a real-time imaging spectroradiometer
【24h】

Development and operation of a real-time imaging spectroradiometer

机译:实时成像光谱仪的开发和运行

获取原文

摘要

Many imaging applications require quantitative determination of a scene's spectral radiance. This paper describes a new system capable of near real-time spectroradiometric imagery. Operating at a full-spectrum update rate of 30 Hz, this imager is capable of collecting a 20 point spectral image from 400 nm to 700 nm, with a 10 nm bandwidth, over an image of 256 $MUL 192 pixels. At a slightly reduced update rate of 20 Hz, 30 point spectra can be collected. A slower update version is available with extended coverage to 900 nm. Although this full scene information is available, to make such a tremendous amount of data more manageable, internal processing electronics compute in real time the tristimulus integrals X, Y, and Z; along with standard RGB, these colorimetric integrals are available either as tristimulus values, or as chromaticity coordinates x, y, and Y. To allow the imager to simulate sensors with many different spectral responses, any arbitrary response function may be loaded into the imager including delta functions to allow single wavelength viewing. Understanding that some applications may require better spectral resolution than 10 nm, a separate processing section allows resolution enhancement to about 1 nm with 1,000 point spectra available from 256 pixels throughout the scene. These enhanced spectra are available at a .3 Hz update rate, limited by the readout rate of the imaging array. The luminous dynamic range of the instrument is about 1 cd/m$+2$/ to 10$+5$/ cd/m$+2$/. The unique challenges of design and calibration are described. Pixel readout rates of 30 MHz, for full frame readout rates of 600 Hz present the first challenge, with the processing rate of 300$PLU million integer operations per second presenting the second. Spatial and spectral calibration of 50,000 pixels and 2,000 spectral positions mandate novel decoupling methods to keep the required calibration memory to a reasonable size. Large luminous dynamic range also requires care to maintain precision operation with minimum memory size.
机译:许多成像应用需要定量确定场景的光谱光线。本文介绍了一种能够近实时光谱散热图像的新系统。以30 Hz的全频谱更新速率运行,该成像仪能够将20点光谱图像从400nm到700nm收集,具有10nm的带宽,在256 $ MUL 192像素的图像上。以略微降低的更新速率为20 Hz,可以收集30点光谱。更新的更新版本可提供扩展覆盖范围至900nm。虽然这种完整的场景信息可用,但要使如此巨大的数据更加可管理,内部处理电子设备实时计算三刺激x,y和z;与标准RGB一起,这些比色积分可作为三刺激值,或者作为色度坐标x,y和y。为了允许成像器模拟具有许多不同光谱响应的传感器,可以将任何任意响应函数加载到成像器中,包括Delta致力于允许单波长观看。理解某些应用可能需要比10nm更好的频谱分辨率,单独的处理部分允许分辨率增强到大约1nm,其中在整个场景中的256个像素可获得1,000点光谱。这些增强型光谱以0.3Hz更新速率,受成像阵列的读出率的限制。仪器的发光动态范围约为1 CD / M $ + 2 $ / 10 $ + 5 $ / CD / M $ + 2 $ /。描述了设计和校准的独特挑战。像素读数率为30 MHz,对于600 Hz的全帧读出率为第一个挑战,处理速率为每秒300 $ PLU万整数操作,呈现第二个。用于50,000像素和2,000个光谱位置的空间和光谱校准要求新的解耦方法,以将所需的校准存储器保持在合理的尺寸。大发光动态范围还需要注意以最小的内存大小保持精度操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号