首页> 外文会议>International Magnetics Conference >From vanishing interaction to superferromagnetic dimerization: Experimental determination of interaction lengths for embedded Co clusters
【24h】

From vanishing interaction to superferromagnetic dimerization: Experimental determination of interaction lengths for embedded Co clusters

机译:从消失与超级磁性二聚体的相互作用:嵌入式CO集群的互动长度的实验测定

获取原文
获取外文期刊封面目录资料

摘要

Magnetic nanoparticles are of great interest in a wide range of disciplines, including magnetic fluids, catalysis, biotechnology/biomedicine, magnetic resonance imaging, data storage, and environmental remediation. Successful applications of such magnetic nanoparticles in the areas listed above are highly dependent on the stability of the particles under a range of different conditions. In particular, these nanomagnets might be used as magnetic media in future high-density magnetic storage devices with ultimate recording bits (i.e., single nanoparticles). Reading and writing of such a system requires to know perfectly its magnetic properties in particular its anisotropy constant. It is then crucial to be able to characterize the magnetic properties of nanoparticles, and to be able to separate the intrinsic behavior from other effects coming from interparticle interactions in an assembly. In this study [6], we present magnetic measurements of Co clusters (around 2.5 nm diameter) embedded in different matrices: carbon and two metallic matrices (Au and Cu). We will first show that by using highly diluted samples prepared by low energy cluster deposition, we can reach a situation where no interactions are detected. The intrinsic magnetic properties of the particles can then be accurately determined thanks to a “global” fitting procedure (see figure 1) relying on the theoretical description of various magnetometry measurements [1]-[5]: low-temperature(hysteresis) and high-temperature (superparamagnetic) m(H) loops, zero- field cooled (ZFC)/field cooled (FC) susceptibility curves, and isothermal remanent magnetization (IRM) curves. We show how both the magnetic size and magnetic anisotropy energy (MAE) can be impacted by the nature of the matrix. Then, by considering nanoparticle assemblies of increasing concentrations (still remaining in a diluted range, lower than 10% in volume), we discuss the different effects of interactions between particles on the magnetic measurements (see figure 2). The evolution of Δm curves (deduced from remanence curves) is found to be very different from that of susceptibility curves. In order to account for the observed evolution of the measurements, we propose a simple model where magnetic dimers are formed for distances lower than a given interaction length [6]. This super-ferromagnetic correlation, which can be consistently inferred for each matrix, thus modifies the magnetic size distribution which has a drastic effect (in particular on ZFC/FC curves) as soon as particles are close enough from each other. The deduced interaction length (of the order of one nanometer) is found to be larger for metallic matrices and could be ascribed to RKKY interactions between neighboring magnetic nanoparticles.
机译:磁性纳米粒子对广泛的学科具有很大的兴趣,包括磁流体,催化,生物技术/生物医学,磁共振成像,数据存储和环境修复。在上面列出的区域中这种磁性纳米颗粒的成功应用高度依赖于在不同条件范围内颗粒的稳定性。特别地,这些纳米Magnet可以用作未来的高密度磁存储装置中的磁介质,具有终极记录位(即单个纳米颗粒)。读取和写入这样的系统需要特别地了解其磁性特性其各向异性常数。它是至关重要的能够表征纳米颗粒的磁性,并且能够将来自来自组件中的颗粒间相互作用的其他效应分离。在该研究[6]中,我们呈现在不同矩阵中的CO簇(直径约为2.5nm直径)的磁测量:碳和两个金属矩阵(Au和Cu)。首先,我们将首先表明通过使用低能量簇沉积制备的高度稀释样品,我们可以达到未检测到相互作用的情况。由于依赖于各种磁体测量的理论描述[1] - [5]:低温(滞后)和高,因此可以准确地确定颗粒的固有磁性(参见图1)精确地确定 - 温度(超顺磁性)M(H)环,零场冷却(ZFC)/场冷却(FC)敏感性曲线,以及等温再生磁化(IRM)曲线。我们展示了磁尺寸和磁性各向异性能量(MAE)的影响如何受到基质的性质。然后,通过考虑增加浓度的纳米粒子组件(仍然仍然在稀释的范围内,低于10%的体积),我们讨论了粒子之间的相互作用对磁测量的不同影响(参见图2)。发现ΔM曲线(从剩磁曲线推断)的演变与易感曲线的曲线非常不同。为了考虑观察到的测量的演化,我们提出了一种简单的模型,其中形成磁性二聚体,用于低于给定的相互作用长度的距离[6]。这种超铁磁相关性可以始终如一地推断为每个矩阵,从而在颗粒彼此接近足够靠近颗粒足够靠近时改变具有剧烈效果的磁尺寸分布(特别是在ZFC / FC曲线上)。发现金属矩阵的推导率相互作用长度(一个纳米的顺序)对金属矩阵较大,并且可以归因于相邻磁性纳米粒子之间的Rkky相互作用。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号