首页> 外文会议>Precise Time and Time Interval Systems and Applications Meeting >Comparison of Extensions of the Three-Cornered Hat and Groslambert Covariance Algorithms for Estimating N-Oscillator Ensemble-Relative Time Stability
【24h】

Comparison of Extensions of the Three-Cornered Hat and Groslambert Covariance Algorithms for Estimating N-Oscillator Ensemble-Relative Time Stability

机译:三角帽和GROSLAMBERT协方差算法的延伸比较估算N-振荡器集合相对时间稳定性

获取原文

摘要

There are multiple options for determination of ensemble-relative Allan Deviation. We focus on the Three-Cornered Hat (TCH) algorithm as extended to N oscillators where N>=3, and the Groslambert Covariance (GCOV) or Allan Covariance algorithm recently reprised by Vernotte, Calosso, and Rubiola. The TCH algorithm uses as inputs pairwise measurements of Allan Deviation, whereas the GCOV algorithm requires time series of pairwise relative phase or frequency measurements. One observation we make is that while Vernotte et al report that the pairwise measurements must be made synchronously between all pairs of oscillators, we found that precise synchronization is not required for the algorithm to work. As long as the measurements are approximately coincident in time, they can be synchronized well enough retroactively. In the case of the extended TCH algorithm, the measurements for each pair of oscillators in the measurement suite are first used to compute pairwise Allan Deviation estimates. Those estimates are then combined in the extended TCH algorithm to produce ensemble-relative ADEV estimates. In the case of the GCOV algorithm, the original pairwise phase differences are first averaged to the desired time scale are then converted by the GCOV algorithm to ensemble-relative ADEV estimates. Both algorithms can be extended to N oscillators. Furthermore, both algorithms can be extended to estimate uncertainties of the ensemble-relative ADEV estimates. A benefit of the GCOV algorithm as reported by Vernotte et al is that it produces physically reasonable ADEV estimates whereas the TCH algorithm can produce negative (and unphysical) values. However, that apparent weakness of the TCH algorithm can be repaired by reformulating TCH as a maximum likelihood problem. The GCOV/Allan Covariance method also produces negative intermediary results which require special treatment, so this is not a significant difference between the two approaches. Overall, in our tests we found that the extended TCH algorithm gave results that were superior to the GCOV/Allan Covariance algorithm, especially at large time scales. TCH also may be preferable to GCOV because the TCH measurements do not require measurements that are either synchronized or approximately time-coincident.
机译:有多种选项来确定集合相对艾伦偏差。我们专注于三角帽(TCH)算法,扩展到N个振荡器,其中n> = 3,以及vernotte,Calosso和Rubiola最近重复的Grooslambert协方差(Gcov)或Allan协方差算法。 TCH算法用作Allan偏差的对成对测量,而Gcov算法需要一系列的成对相对相位或频率测量。我们制作的一个观察是,虽然vernotte等人报告说,必须在所有振荡器之间同步地进行成对测量,但我们发现算法工作不需要精确同步。只要测量随时间近似一致,它们就可以追溯到足够的速度。在扩展TCH算法的情况下,首先使用测量套件中每对振荡器的测量来计算成对allan偏差估计。然后,这些估计在扩展的TCH算法中组合以产生合奏相对ADEV估计。在GCOV算法的情况下,首先将原始成对相位差平均到所需的时间刻度,然后通过GCOV算法转换为合并相对ADEV估计。这两个算法都可以扩展到N振荡器。此外,可以扩展两个算法以估计合奏相对ADEV估计的不确定性。 vernotte等人报告的Gcov算法的一个好处是它产生物理上合理的ADEV估计,而Tch算法可以产生负(和不受神经的)值。然而,通过将TCH重新制定为最大可能性问题,可以修复TCH算法的表观弱点。 GCOV / ALLAN协方差方法还产生需要特殊处理的负中介结果,因此这两种方法之间不是显着差异。总的来说,在我们的测试中,我们发现扩展的Tch算法给出了优于GCOV / Allan协方差算法的结果,尤其是在大型时间尺度上。 TCH也可能是GCOV中的,因为TCH测量不需要测量,该测量是同步的或大致时间重合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号