首页> 外文会议>Precise Time and Time Interval Systems and Applications Meeting >Rubidium Atomic Clock Error Modeling and Forecasting Based on Parameter Constrained Kalman Filter
【24h】

Rubidium Atomic Clock Error Modeling and Forecasting Based on Parameter Constrained Kalman Filter

机译:基于参数约束Kalman滤波器的铷原子时钟误差建模与预测

获取原文

摘要

The accuracy and stability of the receiver clock is particularly important to improve the performance of satellite navigation and positioning. High-precision atomic clocks can help reduce the minimum number of visible satellites required for GNSS positioning and automatic integrity monitoring. Especially for the Radio Determination Satellite Service (RDSS) system, it is difficult to meet the requirements of some high-dynamic applications for the reason it works with active round trip ranging. If the atomic clock in the receiver can maintain high precision in a long time, it can help RDSS system to realize the real-time positioning in passive way for dynamic applications. Most receiver clock error is big enough compared with the other ranging error sources. It always changes quickly and is not easy to predict for its random characters during its power on period, even Rubidium Atomic Clock. In this paper, time and frequency error of the rubidium atomic clock of the user receiver are analyzed by using the GNSS satellite ranging measurement. A linear exponential model suitable for Rubidium Atomic receiver clock error was put forward according to the actual data analysis. In order to have a more accurate clock error prediction, a Kalman filter method based on parameter constrains was proposed for modelling the clock error in the beginning of receiver power on and clock error prediction in later time. Experiments were done on one satellite receiver with Rubidium Atomic Clock using BD1 RDSS satellite signal. The results show that this method can greatly improve the prediction accuracy of Rubidium Atomic Clock error.
机译:接收器时钟的准确性和稳定性尤为重要,可以提高卫星导航和定位的性能。高精度原子钟可以帮助减少GNSS定位和自动完整性监测所需的最小可见卫星数量。特别是对于无线电确定卫星服务(RDSS)系统,难以满足一些高动态应用的要求,因为它适用于有效往返测距。如果接收器中的原子时钟能够长时间保持高精度,则它可以帮助RDSS系统实现动态应用的被动方式中的实时定位。与其他测距源相比,大多数接收器时钟误差足够大。它始终迅速变化,并且在其电源时,甚至是铷原子钟的电源不容易预测其随机字符。在本文中,通过使用GNSS卫星测距测量来分析用户接收器的铷原子时钟的时间和频率误差。根据实际数据分析提出了适用于铷原子接收器时钟误差的线性指数模型。为了具有更准确的时钟误差预测,提出了一种基于参数约束的卡尔曼滤波方法,用于在稍后的时间内为接收器电源开头和时钟误差预测建模时钟误差。使用BD1 RDSS卫星信号在一个卫星接收器上用铷原子钟进行实验。结果表明,该方法可以大大提高铷原子时钟误差的预测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号