首页> 外文会议>Earth Observing Systems >Advances in utilizing tropical deep convective clouds as a stable target for on-orbit calibration of satellite imager reflective solar bands
【24h】

Advances in utilizing tropical deep convective clouds as a stable target for on-orbit calibration of satellite imager reflective solar bands

机译:利用热带深入对流云的进步作为卫星成像仪反光太阳能带的轨道校准的稳定目标

获取原文

摘要

Tropical deep convective clouds (DCC) are proven to be an excellent Earth invariant target for post-launch radiometric assessment of satellite imagers. The success of the DCC technique (DCCT) relies on a large ensemble of identified DCC pixels that are collectively analyzed as a stable reflectance reference. The near-Lambertian reflectance of DCC, as well as their high signal-to-noise ratio, location near the tropopause above most of the atmospheric water vapor and aerosol, and availability across the globe make them an ideal target for radiometric scaling of geostationary (GEO) and low-earth orbiting (LEO) satellites. The DCCT has been successfully applied to calibrate reflective solar bands (with wavelengths < 1 μm) of numerous GEO and LEO imagers. The DCC reflectivity in VIS-NIR is mainly a function of cloud optical depth, and the DCCT provides a stable monthly statistical mode that can be tracked over time for monitoring the radiometric stability of the sensor. However, at shortwave infrared (SWIR) wavelengths, the DCC reflectance is affected by both cloud particle size and cloud optical depth. The DCCT for SWIR bands is found to be most sensitive to the BRDF and brightness temperature, resulting in large seasonal cycles of DCC reflectivity that make the implementation of the DCCT more challenging. The key to improving the DCCT at SWIR wavelengths is proper characterization of the DCC reflectance as a function of viewing and solar angular conditions. This paper presents channel-specific seasonal BRDF models for SWIR bands based on five years of SNPP-VIIRS DCC measurements. The seasonal BRDFs are effective in reducing the temporal variability of the DCC time series by up to 65% when applied to both Aqua-MODIS and NPP-VIIRS SWIR bands. The use of seasonal BRDF models for radiometric stability assessment and absolute inter-calibration of the MODIS and SNPPVIIRS SWIR bands is discussed in the paper. In addition, the modification of the baseline DCCT for daily monitoring of the radiometric stability of the GEO imager L1B radiances is also illustrated. The DCCT is capable of detecting daily GOeS-16 L1B radiance anomalies with a magnitude greater than ±3% for bands 2 and 3, and ±4% shift for band 1 with 3σ significance.
机译:热带深对流云(DCC)被证明是对的卫星成像后推出的辐射评估一个优秀的地球不变的目标。的DCC技术(DCCT)的成功依赖于一个大的集合被共同地分析作为稳定的反射率引用标识DCC像素。 DCC的近朗伯反射率,以及它们的高信噪比,上述大多数大气水蒸汽和气溶胶和可用性在全球范围内的对流层顶附近的位置使它们对于地球同步的辐射比例的理想目标( GEO)和低地球轨道(LEO)卫星。的DCCT已成功地应用于校准反射太阳能带(与波长<1微米)众多GEO和LEO成像器。在VIS-NIR的DCC反射率主要是云光学深度的函数,并且DCCT提供了稳定的,可随时间跟踪用于监测传感器的辐射稳定性每月统计模式。然而,在短波红外(SWIR)波长,则反射率DCC由两个云粒径的影响,云光学深度。的DCCT对SWIR频带被发现是对BRDF和亮度温度最敏感,导致DCC反射率的大的季节周期,使所述DCCT的执行更具挑战性。改善DCCT在SWIR波长的关键是反射率DCC查看和太阳能角条件的函数的适当的表征。基于对5年的SNPP-VIIRS DCC测量为SWIR乐队本文礼物通道专用的季节性BRDF模型。季节性BRDFs是有效的,当施加到两个水色MODIS和NPP-VIIRS SWIR频带通过高达65%减少DCC时间序列的时间可变性。使用季节性BRDF模型辐射稳定性评估和MODIS和SNPPVIIRS SWIR波段的绝对互校准的在本文讨论。此外,基线为DCCT日常监测的GEO成像器L1B辐射率的辐射测量稳定性的的修改也被示出。的DCCT能够检测每日去-16 L1B辐射异常与幅值大于用于频带2和3±3%,而对于带1±4%移与3σ的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号