首页> 外文会议>International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors >WEIBULL AND BOOTSTRAP BASED PROBABILISTIC FATIGUE LIFE MODELING OF STAINLESS STEEL UNDER PWR COOLANT WATER ENVIRONMENT CONDITION
【24h】

WEIBULL AND BOOTSTRAP BASED PROBABILISTIC FATIGUE LIFE MODELING OF STAINLESS STEEL UNDER PWR COOLANT WATER ENVIRONMENT CONDITION

机译:PWR冷却剂水环境条件下不锈钢的威布尔和自举概率疲劳寿命建模

获取原文

摘要

Current fatigue life design curve in ASME Boiler &Pressure Vessel Code Section III is based on the best fittingcurve of in-air data. Fatigue life of reactor componentsunder PWR water condition are estimated based on thisASME in-air design curve and a scalar/deterministicenvironmental correction factor. In the present paper, wediscuss a probabilistic fatigue life modeling approachdirectly using the fatigue data in the PWR water conditionsrather than using the deterministic life correction factorand the in-air ASME design curve. The probabilisticapproach has some advantages. For example, it canexplicitly quantify the uncertainty associated with scatterin strain versus life data points. The scatter in data pointsare often resulted from use of different grade and heat ofmaterial used for test specimens, test temperature, etc. Useof a deterministic environmental correction factor may notalone estimate the life of reactor components accuratelydue to different material grades, heat, surface finish andvarying operating temperature and loading rates(associated stress/strain rates) of actual componentcompared to the material grades, heat, surface finish, testtemperature and stress/strain control rates of the testspecimens (which associated data points were used forconstructing the deterministic design curve and theenvironmental correction factor). Hence, probabilisticestimation of strain versus life curve and environmentalcorrection factor might capture the bulk effect ofuncertainty associated with material grades, heat,environmental conditions, etc. of test specimens and actualcomponents, without explicitly factoring out the individualeffects which sometime not only highly complex but alsoimpractical (e.g. while factoring out the effect of surfacefinish in test specimen versus the actual component). As anillustrative example, we estimate the probabilistic fatiguelife model described by a modified Weibull probabilitydistribution function and using the stainless-steel fatiguedata under PWR water conditions. The maximumlikelihood estimation method is used for the parameterestimation, and the bootstrapping method is used for theuncertainty evaluation of the model. Finally, the resultingprobabilistic model is compared to the ASME design curveapplied by the environmental life correction factorapproach described in NUREG/CR-6909 Rev. 1. Theapproach described in this paper borrows some of theconcepts from upcoming technologies such as from datamining and artificial intelligence technologies to tryimproving the predictive capability of material/componentreliability.
机译:ASME锅炉的当前疲劳寿命设计曲线压力容器代码部分III基于最佳配件空中数据的曲线。反应器组件的疲劳寿命根据PWR水状况估计ASME空中设计曲线和标量/确定性环境校正因素。在本文中,我们讨论概率疲劳寿命建模方法直接使用PWR水条件中的疲劳数据而不是使用确定性寿命校正因子和空中ASME设计曲线。概率方法有一些优点。例如,它可以明确量化与分散相关的不确定性在压力与生命数据点。分散在数据点通常是由于使用不同的等级和热量而导致用于测试样品,测试温度等的材料确定性环境校正因子可能不会单独估计反应器组件的寿命由于不同的材料等级,热,表面光洁度和不同的工作温度和装载率(相关的应力/应变率)实际组件与材料等级相比,热,表面光洁度,测试测试的温度和应变/应变控制率标本(使用相关数据点构建确定性设计曲线和环境校正因素)。因此,概率估计应变与寿命曲线和环境校正因子可能会捕获散装效果与材料成绩,热量相关的不确定性,测试标本的环境条件等组件,不明确地理解个人效果不仅是高度复杂的而且还有不切实际(例如,在处理表面的影响时在测试标本与实际组件中完成。作为A.说明性的例子,我们估计概率疲劳修改后的Weibull概率描述的生命模型分配功能和使用不锈钢疲劳PWR水条件下的数据。最大值似然估计方法用于参数估计,并使用引导方法模型的不确定性评估。最后,由此产生的概率模型与ASME设计曲线进行比较由环境生活校正因素应用nureg / cr-6909中描述的方法.1。本文描述的方法借了一些来自数据等即将到来的技术的概念挖掘和人工智能技术试图提高材料/组件的预测能力可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号