首页> 外文会议>International Conference on Reversible Computation >Discrete Space-Time-State Physics (Social Event Talk)
【24h】

Discrete Space-Time-State Physics (Social Event Talk)

机译:离散的空间状态物理(社交活动谈话)

获取原文

摘要

Consider that, perhaps, the most microscopic elements of space, time and all of the other basic measures in physics are discrete. We certainly have no evidence to the contrary. What this could mean is that there would be natural units of length and time. If so, every actual interval of time could be exactly represented by an integer.If we further suppose that, instead of true randomness at the level of quantum mechanics (QM), we substitute "Unknowable Determinism" or UD, where, at the level of QM, we replace the "random" by the continual influx of unknowable, microscopic information that pours into every QM event, from every direction. The unknowable information must, if this model is to correspond to reality, be essentially unaffected by any physical aspects that we can measure.The idea is to have a model of a microscopic system where physical events are actually deterministic, but that nevertheless, appear as random to observers from within the system. A given system could have unknowable determinism which could appear just as unpredictable, to those within that system, as does true randomness. There would be no way, in general, to reliably predict the exact future of the microscopic states of any actual region. There is a simple explanation for that impossibility. Aside from consequences of laws of physics, including conservation laws, there may be many detailed microscopic states that each correspond to what can be measured macroscopically. The nature of exact reversibility and exact conservation laws are such as to impose the laws of probabilistic QM on our higher-level observations despite the possibility that underlying the apparent randomness is strict determinsism at the most microscopic levels. Thus it may be that the QM process is actually deterministic, but a more appropriate description might be "Unknowable Determinism."It's not that microscopic physics requires a non-deterministic explanation; rather, it could be that our knowledge and understanding of exactly what is happening in the actual real microscopic world is what is necessarily uncertain.Imagine a model of the most microscopic state with space being a 3+1 dimensional regular Cartesian array of cells, where, at each instant of discrete time, each cell is in one of a small integer number of states (such as 3). If we assign integer coordinates (x, y, z, t) to the 2nd-order space-time coordinates of each of the most microscopic cells, then x + y + z + t can be thought of as always being an even number. Of course, the x, y and z coordinates must range over the size of the Universe, but the static range of the t coordinate is 2, the present time and the immediate prior time. This second-order array allows for the convenient static representation of dynamic information. Our hypothesis is that the process that is the most microscopic discrete physics (perhaps underlying QM) could correspond exactly to the temporal evolution of state of some such discrete, deterministic system. Instead of randomness, at the bottom we might have Unknowable Determinism. Every correct picture of the actual microscopic state cannot be calculated by us until after it has arrived, naturally.An advantage of such reversible systems to their creators is that after the detection of an extraordinary event, the process can be reversed to enable efficient study of the exact cause.
机译:考虑到,也许,空间,时间最微观元素,所有的物理其他的基本措施是不连续的。我们当然没有相反的证据。这代表着什么是会有的长度和时间的自然单位。如果是这样,每一个时间实际间隔可以准确地由整数表示。如果我们进一步假设,而不是在量子力学的水平(QM)真正的随机性,我们代替“不可知决定论”或UD,其中,在质量管理的水平,我们通过不可知的不断涌入取代“随机”,微观信息盆满钵满到每一个QM事件,从各个方向。不可知的信息必须的,如果这种模式是符合实际,是任何物理方面基本上不受影响,我们可以衡量的。这个想法是有一个微小的系统,其中物理事件实际上是确定性的模型,但尽管如此,从系统中显示为随机观察员。给定系统可能有可能出现同样不可预知的不可知的决定,那些系统中一样,真正的随机性。就没有办法,一般来说,可靠地预测任何实际区域的微观状态的确切未来。有针对不可能一个简单的解释。除了物理的法律,包括守恒定律的后果,可能有很多详细的微观状态,其各自对应什么可以宏观上进行测量。确切的可逆性和详细的守恒定律的性质是如强加给我们的更高层次的观察概率QM的法律尽管明显的随机性基本是在最微观层面严格determinsism的可能性。因此,它可能是质量管理的过程实际上是确定的,但更恰当的描述可能是“不可知确定性。”这并不是说微观物理学需要非确定性的解释;相反,这可能是因为我们的知识和正是在实际的真实微观世界正在发生的事情的理解是什么,是一定不确定性。想象最微观状态的模型空间中的细胞,其中,在离散时间每个时刻,每个小区是在状态的一个小的整数(如3)中的一个的3 + 1维的规则的笛卡尔阵列。如果我们分配整数坐标(X,Y,Z,T)彼此最微观细胞的第二阶空间 - 时间坐标,则x + Y + Z + t可被认为是总是为偶数。当然,在x,y和z坐标的范围必须在宇宙的大小,但坐标吨的静态范围是2,当前时间和直接前的时间。这个二阶阵列允许的动态信息的方便静态表示。我们的假设是,这是最微观的离散物理过程(也许根本QM)能够完全对应于一些这样的离散,确定系统的状态的时间演变。取而代之的随机性,在底部我们可能有不可知确定性。实际的微观状态的每一个正确的图片不能被我们计算直到它已到达后,自然。这样可逆系统,以它们的创造者的一个优点是,在检测到异常事件之后,该过程可以颠倒,以使确切原因的高效学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号