首页> 外文会议>SPIE Conference on Plasmonics: Design, Materials, Fabrication, Characterization, and Applications >Ultra-compact optical switch based on Fano resonance in graphenefunctionalized plasmonic nano-cavity
【24h】

Ultra-compact optical switch based on Fano resonance in graphenefunctionalized plasmonic nano-cavity

机译:基于FANO功能化等化等离子体纳米腔内的FANO共振的超紧凑型光学开关

获取原文

摘要

Typical many-wavelength scale of the optical fiber-integrated photonic elements (for example, ring resonators, Bragg reflectors, Mach-Zehnder interferometers, etc.) has been an insuperable obstacle for the realization of truly integrated photonic circuits that would have the dimensions compliant with the semiconductor industry standards. Doped graphene however, promises the deeply subwavelength size of the plasmonic-based optical elements due to the very short plasmon wavelength. In this work, we propose a design of the ultra-compact fiber-integrated optical switch based on the graphene-functionalized plasmonic nano-cavity for ultrafast light modulation. Presence of graphene allows to actively control the plasmonic resonance in the cavity via the electrostatic doping, so that properly tuned Fermi level in graphene results in a strong constructive (destructive) Fano interference between the propagating mode in the fiber and the graphene plasmonic mode in the nano-cavity, increasing (zeroing) the transmission efficiency at given frequency. The nano-cavity effectively works as a plasmonic Fabry-Perot resonator, significantly enhancing the coupling efficiency as well as the interference strength. Due to the strong confinement of graphene plasmons, the active volume of the switch can be as small as 10~(-3)λ_0~(-3), making it possible to build an optical circuit with a very high density of elements. Furthermore, sharp profile of the Fano resonance provides a fast switching speed even with small variation of doping. Therefore, proposed design requires very low driving voltage of~1V, while providing the modulation depth of at least 0.5.
机译:光纤集成光子元件的典型多波长刻度(例如,环谐振器,布拉格反射器,Mach-Zehnder干涉仪等)一直是实现真正集成的光子电路的可耐受障碍,这将具有柔顺的尺寸随着半导体行业标准。然而,由于等离子体波长非常短的等离子体波长,掺杂的石墨烯不应承诺基于等离子体基光学元件的深度亚波长尺寸。在这项工作中,我们提出了基于石墨烯官能化等级纳米腔的超紧凑型光纤集成光开关的设计,以便超快调制。石墨烯的存在允许通过静电掺杂主动地控制腔体中的等离子体共振,从而使得石墨烯中的适当调谐的费米水平导致光纤和石墨烯等级模式之间的传播模式之间的强大建设性(破坏性)FANO干扰纳米腔,增加(归零)给定频率的传输效率。纳米腔有效地用作等离子体法布里 - 珀罗谐振器,显着提高耦合效率以及干扰强度。由于石墨烯等离子体的强大限制,开关的主动量可以小于10〜(-3)λ_0〜(-3),使得可以构建具有非常高的元件密度的光学电路。此外,扇形谐振的尖锐轮廓即使掺杂的小变化也具有快速的开关速度。因此,所提出的设计需要极低的驱动电压〜1V,同时提供至少0.5的调制深度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号