首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference >Electrospun Carbon nanofiber with controllable waviness as stretchable conductor
【24h】

Electrospun Carbon nanofiber with controllable waviness as stretchable conductor

机译:Electrom碳纳米纤维具有可控波纹作为可拉伸导体

获取原文

摘要

Electrospun carbon nanofiber (CNF) has been demonstrated to possess outstanding physical properties with relatively low fabrication cost. In this work, CNFs with controllable waviness are made through shrinkage-induced micro buckling of polymeric precursors inside amorphous PMMA matrix. Compared with the existing releasing prestrained poly(dimethylsiloxane) (PDMS) substrate induced nanofiber buckling, this method provides a more simple process suitable for large scale production of buckled CNF without introducing defects as stretchable conductor. To fabricated the wavy and coiled CNFs, the as-electrospun polyacrylonitrile (PAN) precursor nanofiber was first dip-coated with PMMA to form a nanocomposite containing PAN nanofiber and PMIVIA matrix. The obtained nanocomposite was then hot-drawn to different draw ratios. During the stabilization process, the entropic and chemical reaction induced shrinkage of hot-drawn PAN nanofiber provides the compressive force for the nanocomposite to shrink, which generates compressive stresses on the PAN nanofibers causing them to buckle. In the following carbonization process, the PMMA phase will be fully decomposed and PAN nanofiber will be transferred to CNF at 1400 °C. The waviness of CNF is demonstrated to be tunable through controlling the hot-drawing ratio of the precursor nanofiber. The CNF mat electrical resistance change with applied strain was measured to show its stability and repeatability in application of stretchable conductors.
机译:电的碳纳米纤维(CNF)已被证明具有相对较低的制造成本显着的物理性能。在这项工作中,具有可控波纹的CNF通过无定形的PMMA基体内部的聚合前体的收缩引起的微弯曲制成。与现有的预应变释放的聚(二甲基硅氧烷)(PDMS)基片引起的纳米纤维屈曲相比,该方法提供了适用于大规模生产扣CNF的,而不会引入缺陷伸缩性导体更简单的过程。为了制造的波浪形和螺旋的CNF中,所述制电聚丙烯腈(PAN)前体的纳米纤维是第一浸涂PMMA以形成含有PAN纳米纤维和PMIVIA基质的纳米复合材料。将所得到的纳米复合材料,然后热拉伸至不同的拉伸比。在稳定过程中,热拉伸PAN纳米纤维的熵和化学反应引起的收缩提供了一种用于纳米复合材料收缩的压缩力,从而在纳米纤维PAN使它们扣产生压缩应力。在下面的碳化过程中,PMMA相将被完全分解和PAN纳米纤维将在1400℃下被转移到CNF。 CNF的起伏被证明是通过控制前体的纳米纤维的热拉伸比可调。随着施加的应变的CNF垫电阻变化进行测定,以显示其在拉伸的导体的应用程序的稳定性和可重复性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号