首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference >Predicting the Enhancement in the Compressive Strength of Carbon Fiber Reinforced Polymer Composites by Overwrapping Multiwalled Carbon Nanotubes using a Multiscale Approach
【24h】

Predicting the Enhancement in the Compressive Strength of Carbon Fiber Reinforced Polymer Composites by Overwrapping Multiwalled Carbon Nanotubes using a Multiscale Approach

机译:通过多尺度方法翻盖多壁碳纳米管通过包裹多壁碳纳米管来预测碳纤维增强聚合物复合材料的抗压强度的增强

获取原文

摘要

The high tensile strength of polymer matrix composites (PMC) is derived primarily from the high strength of the carbon fibers embedded in the polymer matrix. Fibers typically have high strength in tension. However, their compressive strength is generally much lower due to the fact that under compression, the fibers tend to fail through micro-buckling (or kinking) well before compressive fracture occurs. One approach to improve properties of the fiber/matrix interface in a PMC is the so-called "fuzzy fiber" concept, where carbon nanotubes (CNT) are grown directly on the carbon fiber through CVD. But, this often leads to degradation of in-plane fiber properties due to the high processing temperatures. In this work, we consider multi-walled CNT sheets (MWNTS) wrapped around carbon fiber at room temperature to improve fiber/matrix interfacial properties which, in turn, influences compressive strength of the composite. To investigate the effect of the wrapping of CNT sheet on composite strength, an atomistic model of a representative volume element (RVE) was developed to study the interface region between the epoxy (Epon-862), carbon fiber and the scrolled MWNT sheets. Molecular Dynamics (MD) simulations were performed on this model using the LAMMPS software to study its behavior under shear deformation. After proper equilibration, a uniform shear strain was imposed on the MD model with appropriate boundary conditions at room temperature. The compressive strength of the unidirectional composite was computed using a novel hierarchical multi-scale model comprising of the rule of mixtures at the microscale, and the modified Argon's formula for composites at the macroscale. Model predictions were benchmarked through comparison with experimental data for different volume fractions of MWNT sheet.
机译:聚合物基质复合材料(PMC)的高抗拉强度主要来自嵌入聚合物基质中的碳纤维的高强度。纤维通常具有高强度的张力。然而,它们的抗压强度一般要低得多,由于这样的事实:在压缩下,该纤维倾向于通过微弯曲(或扭结)失败压缩断裂发生之前很好。改善PMC中纤维/矩阵界面性质的一种方法是所谓的“模糊纤维”概念,其中碳纳米管(CNT)直接通过CVD在碳纤维上生长。但是,由于高处理温度,这通常会导致面内纤维性能的降解。在这项工作中,我们考虑在室温下缠绕碳纤维周围的多壁CNT片(MWNT),以改善纤维/基质界面性能,从而影响复合材料的抗压强度。为了研究CNT片材包裹CNT片材对复合强度的影响,开发了代表性体积元素(RVE)的原子模型,以研究环氧树脂(EPON-862),碳纤维和滚动的MWNT片之间的界面区域。使用LAMMPS软件对该模型进行分子动力学(MD)模拟,以研究其在剪切变形下的行为。在正确的平衡后,在室温下,在MD模型上施加均匀的剪切菌株。使用一种新的分层多尺度模型来计算单向复合材料的压缩强度,所述分层多尺度模型包括微尺寸在Microscale处的混合物规则,以及Macroscale的复合材料的改进的氩气公式。通过与MWNT片材的不同体积分数的实验数据进行比较,模型预测是基准测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号