首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference >Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries
【24h】

Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries

机译:Rans CFD方法的精度设计优化汽轮机叶片尖端几何形状

获取原文

摘要

In the never-ending search for higher engine performance, the optimization of the blade tip geometry provides an opportunity to control the tip leakage flow, mitigate the rotor mixing losses and manage the heat load distributions. However, the setup of numerical flow simulations of a high-pressure turbine stage for the purpose of blade tip geometry optimization is subjected to conflicting requirements: the computational demands have to be low enough to run a sufficiently large number of direct evaluations within a limited period of time, whereas the numerical model must guarantee sufficient accuracy in the prediction of the relevant flow physics that drives variations in the performance objectives. This paper evaluates the options for the setup of numerical simulations suitable for CFD-based blade tip optimization and assesses the impact of the CFD methods on the computation accuracy with emphasis on rotor tip flow prediction. The numerical study is performed with the Numeca FINE/Turbo and FINE/Open commercial RANS solvers on a set of optimised blade tip geometries in a high-pressure gas turbine stage. The domain is meshed with either an unstructured or a multi-block structured grid in order to assess the influence of domain discretization methods on performance parameters quantification. The location of the high-pressure stage after the combustor poses increased demands on turbulence modelling due to the high inlet turbulence intensity. This work compares the performance of the one-equation Spalart-Alllmaras (SA) and the two-equation k-ε and k-ω SST. Another section is dedicated to methods for modelling of stator-rotor interaction. Domain restriction to rotor-only is attractive for its low computational demands, but it does not allow to include the stator-rotor interaction effects. This method is compared against a full-stage setup, empolying either the commonly used steady computation with mixing plane or the Non-Linear Harmonics method which allows to capture the unsteady blade-passing effects. The computations are validated by experimental data available from a large scale high-speed turbine facility, employing a rainbow rotor approach to allow the simultaneous aerothermal testing of multiple optimized blade tip geometries.
机译:在永无止境搜索更高的发动机性能下,刀片尖端几何形状的优化提供了控制尖端泄漏流动的机会,减轻转子混合损失并管理热负荷分布。然而,对于刀片尖端几何优化的目的的高压涡轮级的数值流模拟的设置受冲突的要求:计算需求必须足够低,以便在有限的时期内运行足够大量的直接评估时间,而数值模型必须保证足够的准确性,以预测驱动性能目标的变化的相关流物理学。本文评估了适用于基于CFD的刀片尖端优化的数值模拟设置的选项,并评估CFD方法对具有强调转子尖端流动预测的计算精度的影响。在高压燃气涡轮级的一组优化的刀片尖端几何形状上,用Numeca精细/涡轮和细/开放商业RAN溶解进行数值研究。域以非结构化或多块结构网格网格,以评估域离散化方法对性能参数量化的影响。燃烧器在燃烧器姿势之后的高压级的位置增加了由于高入口湍流强度而对湍流建模的需求增加。这项工作比较了单方程式Spalart-AllLMARAS(SA)的性能和两个等式K-ε和K-ωSST。另一部分专用于用于建模定子转子相互作用的方法。对转子的域限制 - 仅对其低计算需求具有吸引力,但它不允许包括定子转子相互作用效果。将该方法与全阶段设置进行比较,Empolying使用混合平面或非线性谐波方法进行常用的稳态计算,允许捕获不稳定的刀片传递效果。通过从大规模的高速涡轮机构可获得的实验数据验证计算,采用彩虹转子方法来允许多个优化叶片尖端几何形状的同时曝光测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号