首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference >Experimental Investigation of Solid and Fluidic Obstacle Interactions with Premixed Laminar Flames
【24h】

Experimental Investigation of Solid and Fluidic Obstacle Interactions with Premixed Laminar Flames

机译:固有流体障碍物与预混层流体相互作用的实验研究

获取原文

摘要

There have been extensive research efforts to control the onset of detonation through the Deflagration-to-Detonation transition (DDT). This process occurs when a flame rapidly accelerates, produces a leading shock wave that compresses the reactant mixture and generates a spontaneous detonation wave. To more efficiently induce DDT, numerous studies have demonstrated enhanced flame acceleration through the generation of inflow turbulence. Conventional turbulence induction has been achieved using solid obstacles within the flow that create recirculation regions, reflect acoustic waves for shock flame interactions and induce interfacial hydrodynamic instabilities that corrugate the flame boundary. The present work is an experimental investigation that explores the flame acceleration effects of a propagating flame interacting with a solid obstacle and a fluidic slot jet. The jet is a novel technique that exposes the flame directly to highly turbulent reactants. The prevalent mechanisms driving the flame-fluidic jet interaction are shown to enhance turbulent reactant transport due to high levels of jet turbulence and jet entrainment within the combusted products. The study explores the effect of various main and jet equivalence ratios to extend the experimental database of turbulent propagating flame interactions and identify the underlying physics during these dynamic flame interactions. Schlieren photography, a non-invasive optical diagnostic, is used to visualize the flow field, identify turbulent structures, and classify turbulent interaction mechanisms throughout the stages of the turbulent interaction. Higher equivalence ratios are found to display higher final flame front propagation velocities. Further exploration of the dynamic flame interaction in the various cases demonstrate turbulence growth, generation of flame vortices, flow restriction, jet deflection, and other mechanisms that drive higher burning rates. The study works towards enhancing the understanding of these complex physical mechanisms that are critical to the process of flame acceleration to detonation by isolating and adjusting the various parameters of the propagating laminar flame interaction.
机译:通过换挡对爆震转换(DDT),有广泛的研究努力来控制爆炸的发作。该方法发生在火焰迅速加速时,产生压缩反应物混合物并产生自发爆轰波的前导冲击波。为了更有效地诱导DDT,许多研究通过产生流入湍流来证明了增强的火焰加速度。通过在产生再循环区域内的流动内的固体障碍物实现了传统的湍流诱导,反射用于冲击火焰相互作用的声波,并诱导界面流体动力学稳定性,使火焰边界波形。本作本作的实验研究探讨了传播火焰与固体障碍物和流体槽射流相互作用的火焰加速效应。喷射是一种新颖的技术,其将火焰直接暴露于高度湍流的反应物。驱动火焰流体射流相互作用的普遍机制被示出为增强由于燃烧产物内的高水平喷射湍流和喷射夹带而增强湍流反应物。该研究探讨了各种主要和喷射等效比率的效果,以扩展湍流传播火焰相互作用的实验数据库,并在这些动态火焰相互作用期间识别底层物理学。 Schlieren Photography,一种非侵入性光学诊断,用于可视化流场,识别湍流结构,并在湍流相互作用的阶段进行湍流相互作用机制。发现较高的等效比显示更高的最终火焰前沿传播速度。进一步探索各种情况下的动态火焰相互作用展示了湍流生长,火焰涡流的产生,流动限制,射流偏转以及驱动更高燃烧速率的机制。该研究旨在通过隔离和调整传播层状火焰相互作用的各种参数,提高对这些复杂物理机制的理解,这对火焰加速度的火焰加速过程至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号