首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Experimental Investigation of Solid and Fluidic Obstacle Interactions with Premixed Laminar Flames
【24h】

Experimental Investigation of Solid and Fluidic Obstacle Interactions with Premixed Laminar Flames

机译:预混层流火焰对固体和流体障碍物相互作用的实验研究

获取原文

摘要

There have been extensive research efforts to control the onset of detonation through the Deflagration-to-Detonation transition (DDT). This process occurs when a flame rapidly accelerates, produces a leading shock wave that compresses the reactant mixture and generates a spontaneous detonation wave. To more efficiently induce DDT, numerous studies have demonstrated enhanced flame acceleration through the generation of inflow turbulence. Conventional turbulence induction has been achieved using solid obstacles within the flow that create recirculation regions, reflect acoustic waves for shock flame interactions and induce interfacial hydrodynamic instabilities that corrugate the flame boundary. The present work is an experimental investigation that explores the flame acceleration effects of a propagating flame interacting with a solid obstacle and a fluidic slot jet. The jet is a novel technique that exposes the flame directly to highly turbulent reactants. The prevalent mechanisms driving the flame-fluidic jet interaction are shown to enhance turbulent reactant transport due to high levels of jet turbulence and jet entrainment within the combusted products. The study explores the effect of various main and jet equivalence ratios to extend the experimental database of turbulent propagating flame interactions and identify the underlying physics during these dynamic flame interactions. Schlieren photography, a non-invasive optical diagnostic, is used to visualize the flow field, identify turbulent structures, and classify turbulent interaction mechanisms throughout the stages of the turbulent interaction. Higher equivalence ratios are found to display higher final flame front propagation velocities. Further exploration of the dynamic flame interaction in the various cases demonstrate turbulence growth, generation of flame vortices, flow restriction, jet deflection, and other mechanisms that drive higher burning rates. The study works towards enhancing the understanding of these complex physical mechanisms that are critical to the process of flame acceleration to detonation by isolating and adjusting the various parameters of the propagating laminar flame interaction.
机译:已经进行了广泛的研究努力,以通过爆燃-爆轰过渡(DDT)控制爆轰的发生。当火焰迅速加速,产生超前的冲击波,压缩反应物混合物并产生自发爆震波时,就会发生此过程。为了更有效地诱发DDT,许多研究已经证明,通过产生流入湍流可以增强火焰加速。传统的湍流诱导是利用流动中的固体障碍物实现的,该固体障碍物产生了再循环区域,反射了声波以进行冲击火焰相互作用,并引起了使火焰边界皱褶的界面流体动力不稳定性。本工作是一项实验研究,探索了与固体障碍物和射流式槽喷相互作用的传播火焰的火焰加速效果。射流是一种新颖的技术,可将火焰直接暴露于高度湍流的反应物中。由于在燃烧产物中高水平的射流湍流和射流夹带,驱动火焰-流体射流相互作用的普遍机制显示出增强了湍流反应物的运输。该研究探索了各种主要当量比和射流当量比的影响,以扩展湍流传播火焰相互作用的实验数据库,并确定这些动态火焰相互作用中的潜在物理原理。 Schlieren摄影是一种非侵入性的光学诊断工具,用于在整个湍流相互作用阶段可视化流场,识别湍流结构并对湍流相互作用机制进行分类。发现较高的当量比显示较高的最终火焰前沿传播速度。在各种情况下对动态火焰相互作用的进一步研究表明湍流的增长,火焰涡流的产生,流动的限制,射流的偏转以及其他驱动更高燃烧速率的机制。这项研究致力于通过隔离和调整传播的层流火焰相互作用的各种参数,来增强对这些复杂的物理机制的理解,这些机制对于火焰加速到爆炸的过程至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号