首页> 外文会议>International Symposium of the Society of Core Analysts >COUPLING MULTIPHASE HYDRODYNAMIC AND NMR PORE-SCALE MODELING FOR ADVANCED CHARACTERIZATION OF SATURATED ROCKS
【24h】

COUPLING MULTIPHASE HYDRODYNAMIC AND NMR PORE-SCALE MODELING FOR ADVANCED CHARACTERIZATION OF SATURATED ROCKS

机译:耦合多相流体动力学和NMR孔径模拟,用于饱和岩石的高级特征

获取原文

摘要

We use the novel method of the density functional hydrodynamics(DFH)[1 – 4] to model complex multiphase scenarios occurring in natural cores on a pore-scale. Such scenarios may be extremely diverse,ranging from those inherent in RCA and SCAL measurements,and to much more complex processes relevant to chemical EOR. We perform the numerical simulation of several multiphase flow scenarios by means of the direct hydrodynamic(DHD)simulator,which is a numerical code containing implementation of DFH. We have demonstrated some of the capabilities of our numerical tool,DHD,for simulation of multiphase flow previously [4 – 6]. Now we focus on a combination of two different methods for characterization of a multiphase system in pores. The first method comes from hydrodynamic and thermodynamic description obtained through DHD simulation. The second method emerges from numerical modeling of NMR response corresponding to T2 relaxation and pulsed gradient spin-echo(PGSE)experiments [7 – 10],which are routinely conducted not only in laboratory,but also downhole using NMR logging tools. We model the NMR response by solving numerically the generalized Bloch-Torrey equations [11] containing relaxation,diffusion and magnetization transport terms. The equations are subject to boundary conditions describing surface relaxation. The NMR description we use enables performing modeling of T2 relaxation and PGSE experiments,and their combination. The numerical NMR solver is also implemented within the DHD simulator. This facilitates application of NMR modeling(i.e.,makes it automatic)to digitized cores with multiphase saturation,whose state has previously been described and simulated in the frame of the DFH. Such close coupling of two characterization methods different by nature is extremely important and brings an opportunity for improvement of NMR response interpretation techniques,which suffer from the inverse and ill-posed nature of the fluids characterization problem.
机译:我们使用密度函数流体动力学(DFH)[1 - 4]的新方法模拟孔径上自然核心的复杂多相情景。这种情况可能非常多样化,范围从RCA和SAC测量中固有的那些,以及与化学EOR相关的更复杂的过程。我们通过直接流体动力学(DHD)模拟器执行多个多相流场景的数值模拟,这是一种包含DFH实现的数字代码。我们已经展示了我们的数值工具DHD的一些能力,用于先前的多相流动的模拟[4 - 6]。现在我们专注于两种不同方法的组合,以表征孔隙中的多相系统。第一种方法来自通过DHD仿真获得的流体动力学和热力学描述。第二种方法从对应于T2弛豫和脉冲梯度旋转回波(PGSE)实验的NMR响应的数值建模出来[7-10],其不仅在实验室中常规进行,而且使用NMR测井工具井下进行。我们通过求解数字上的广义BLOCH-Torrey方程[11]求解NMR响应,其中包含松弛,扩散和磁化传输术语。等式受描述表面松弛的边界条件。我们使用的NMR描述可以执行T2松弛和PGSE实验的建模及其组合。数值NMR求解器也在DHD模拟器内实现。这有利于使用多相饱和度的NMR建模(即,使其自动)应用于数字化核心,其先前已经在DFH的帧中描述和模拟了该状态。这种表征方法的这种紧密耦合不同的是自然界的极为重要,并为改善NMR响应解释技术带来的机会,这遭受了流体表征问题的逆和不良性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号