首页> 外文会议>International Scientific Conference on Electrical Engineering, Energy, Mechanical Engineering >Numerical Modeling of Steel Surface Hardening in the Process of High Energy Heating by High Frequency Currents
【24h】

Numerical Modeling of Steel Surface Hardening in the Process of High Energy Heating by High Frequency Currents

机译:高频电流高能加热过程中钢表面硬化的数值模型

获取原文

摘要

Surface layer modification methods using concentrated energy sources to ensure high heating rates of approximately 104 - 105°C/s are becoming increasingly common in an attempt to improve operational performance of machine components. As a result, it is quite difficult to determine heat cycle parameters by means of experiments to predict the required intensity and distribution behavior of residual stresses and strains. The paper addresses the issue of numerical simulation of the stress-strain behavior during high energy heating by high frequency currents (HFC HEH). A finite element model has been generated using the ANSYS and SYSWELD software based on numerical computations of differential equations for transient heat conduction (Fourier equation), carbon diffusion (Fick's second law), and the elastic-plastic behavior of the material. The simulation data was verified by full-scale experiments using optical and scanning microscopy and mechanical and X-ray methods to determine residual stresses. It has been established that the level of residual compressive stresses on the component surface can be from -500 to -1000 MPa within the range of HFC HEH process variations under review. It is proven in theory and confirmed by experiments that the transition layer thickness must amount to 25 - 33% of the hardened layer depth for the tensile stress peak to shift to deeper material layers while compressive stresses on the surface decrease by 6 - 10%, in order to prevent hardening cracks.
机译:使用浓缩能源的表面层改性方法,以确保大约104-105℃/ s的高加热速率越来越普遍,以便改善机器组件的操作性能。结果,通过实验确定热循环参数是非常困难的,以预测残留应力和菌株所需的强度和分布行为。本文通过高频电流(HFC HEH)在高能量加热过程中解决了应力 - 应变行为的数值模拟问题。使用基于微分方程的数值计算的ANSYS和SYSWELD软件生成有限元模型,用于瞬态导热(傅里叶方程),碳扩散(Fick的第二法)和材料的弹性塑性行为。通过使用光学和扫描显微镜和机械和X射线方法来验证模拟数据,以确定残留应力。已经确定,组分表面上的残余压缩应力水平可以在审查的HFC HEH工艺变化范围内为-500至-1000MPa。理论上证明并通过实验证实,过渡层厚度必须为抗拉应力峰的淬火层深度的25-33%,以转移到更深的材料层,同时表面上的压缩应力降低6-10%,为了防止硬化裂缝。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号