首页> 外文会议>International Congress on Advances in Nuclear Power Plants >HTR Kernel-by-Kernel Fuel Spherical Model Burnup Analysis
【24h】

HTR Kernel-by-Kernel Fuel Spherical Model Burnup Analysis

机译:HTR内核燃油球形模型燃烧分析

获取原文

摘要

Advanced High Temperature gas-cooled Reactors (HTR) currently being developed (GFR, VHTR, PBMR, and GT-MHR) are able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. The objective of this research is to introduce the Kernel-by-Kernel Fuel (KbKF) model, and to show the capabilities of KbKF model in the HTR fuel cycle burn-up analysis. This study reports the validation of a HTR unit lattice - KbKF spherical model, and summarizes the KbKF-calculated results of the HTR fuel burn-up analysis. Although HTR fuel is rather homogeneously dispersed in the graphite matrix, the heterogeneity effects in between fuel kernels and pebbles cannot be ignored. The effect of the irregular pebble lattice is addressed through the use of Danc-off correction factors in the resonance treatment. The double-heterogeneous MCNP model recently developed at the Idaho National Engineering and Environmental Laboratory (INEEL) contains tens of thousands of cubic fuel kernel cells, which not only makes it very difficult to deplete the fuel, kernel by kernel, for the fuel cycle analysis, but also has a profound neutron streaming effect. To avoid these difficulties, a newly developed and validated HTR pebble-bed KbKF spherical MCNP model, is used in this study. A Monte Carlo code, MCNP, coupled with an isotope depletion code, ORIGEN-2, via MCWO can use the above-mentioned KbKF model to deplete the fuel kernels individually. Double-heterogeneity of the PBMR fuel unit cell was taken into account, i.e. self-shielding of the fuel kernels, in the KbKF model. The spherical mesh in the KbKF model contained 32 subdivided fuel pebble, equal volumes, mini-shells. These mini-shells are then divided the (θ Φ) into 21.65 (square root of 15000 kernels per pebble /32) equalinterval angles, such that in sub-divided mini-cell contains a fuel kernel. The KbKF model can handle the complex spectral transitions at the boundaries between the mini-cells in a straightforward fashion and treat the entire lattice at once. The ESKOM PBMR unit cell was chosen as a reference case in this study to build the KbKF model for the fuel cycle burnup analysis. The MCWO and KbKF-calculated results, such as, K-inf, U and Pu isotopic concentrations, and Pu / ~(238)U ratio versus EFPDs, and detailed radial fuel kernel fission power profile versus pebble's fraction of radius (r/r0) at different burnups are discussed.
机译:目前正在开发的先进的高温气体冷却反应器(HTR,VHTR,PBMR和GT-MHR)能够通过依赖于创新特征和无源系统来实现安全的简化。这些HTR的创新功能之一是依赖陶瓷涂覆的燃料颗粒,即使在极端意外条件下也能够保持裂变产物。本研究的目的是介绍内核燃料(KBKF)模型,并显示KBKF模型在HTR燃料循环烧伤分析中的能力。本研究报告了HTR单元格子 - KBKF球体模型的验证,并总结了HTR燃料烧伤分析的KBKF计算结果。尽管HTR燃料在石墨基质中相当均匀地分散,但不能忽略燃料仁和鹅卵石之间的异质性效应。通过在共振处理中使用Danc-Off校正因子来解决不规则卵石晶格的效果。最近在爱达荷州国家工程和环境实验室(防空机构)开发的双异质MCNP模型包含了数万间立方燃料核细胞,这不仅使得燃料循环分析非常困难地耗尽燃料,内核核心核心,但也具有深刻的中子媒体效果。为避免这些困难,在本研究中使用了新开发和验证的HTR Pebble床KBKF球形MCNP模型。蒙特卡罗代码,MCNP与同位素耗尽代码,OIGEN-2,通过MCWO可以使用上述KBKF模型来单独耗尽燃料核。考虑了PBMR燃料单元电池的双异质性,即燃料核,KBKF模型中的燃料核的自屏蔽。 KBKF模型中的球形网格包含32个细分的燃料鹅卵石,相同的卷,迷你壳。然后将这些迷你壳划分为21.65(每个小卵石/ 32个)的平方根/ 32个平方根/ 32),使得在亚分割的迷你细胞中含有燃料核。 KBKF模型可以以简单的方式处理迷你细胞之间的边界处的复杂光谱过渡,并立即处理整个格子。选择ESKOM PBMR单位细胞作为本研究中的参考案例,以构建燃料循环燃烧分析的KBKF模型。 MCWO和KBKF计算结果,如K-INF,U和PU同位素浓度,PU /〜(238)U比率与EFPDS,以及详细的径向燃料核裂变功率曲线与鹅卵石的半径分数(R / R0 )讨论了不同的燃尽。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号