首页> 外文会议>AIAA non-deterministic approaches conference >Uncertainty Reduction using Bayesian Inference and Sensitivity Analysis: A Sequential Approach to the NASA Langley Uncertainty Quantification Challenge
【24h】

Uncertainty Reduction using Bayesian Inference and Sensitivity Analysis: A Sequential Approach to the NASA Langley Uncertainty Quantification Challenge

机译:使用贝叶斯推论和敏感性分析的不确定性降低:NASA Langley不确定性挑战的顺序方法

获取原文

摘要

This paper presents a computational framework for uncertainty characterization and propagation, and sensitivity analysis under the presence of aleatory and epistemic uncertainty, and develops a rigorous methodology for efficient refinement of epistemic uncertainty by identifying important epistemic variables that significantly affect the overall performance of an engineering system. The proposed methodology is illustrated using the NASA Langley Uncertainty Quantification Challenge (NASA-LUQC) problem that deals with uncertainty analysis of a generic transport model (GTM). First, Bayesian inference is used to infer subsystem-level epistemic quantities using the subsystem-level model and corresponding data. Second, tools of variance-based global sensitivity analysis are used to identify four important epistemic variables (this limitation specified in the NASA-LUQC is reflective of practical engineering situations where not all epistemic variables can be refined due to time/budget constraints) that significantly affect system-level performance. The most significant contribution of this paper is the development of the sequential refinement methodology, where epistemic variables for refinement are not identified all-at-once. Instead, only one variable is first identified, and then, Bayesian inference and global sensitivity calculations are repeated to identify the next important variable. This procedure is continued until all 4 variables are identified and the refinement in the system-level performance is computed. The advantages of the proposed sequential refinement methodology over the all-at-once uncertainty refinement approach are explained, and then applied to the NASA Langley Uncertainty Quantification Challenge problem.
机译:本文介绍了用于不确定性表征和传播的计算框架,以及在存在梯生和认知不确定性的情况下,通过识别重要的认识变量来开发严格的认识到认识性不确定性的严格方法,这显着影响了工程系统的整体性能。 。使用NASA Langley不确定性量化挑战(NASA-LUQC)问题来说明所提出的方法,该问题涉及通用传输模型(GTM)的不确定性分析。首先,贝叶斯推理用于使用子系统级模型和相应数据推断子系统级血症数量。二,基于方差的全局敏感性分析的工具用于识别四个重要的认识变量(NASA-LUQC中规定的这个限制是实际工程情况的反映,其中不是所有认识变量,由于时间/预算限制而言,这显着影响系统级性能。本文最重要的贡献是开发顺序细化方法,其中用于改进的认识变量没有全部识别出来。相反,首先识别出一个变量,然后重复贝叶斯推断和全局敏感性计算以识别下一个重要变量。继续该过程,直到识别所有4个变量,并且计算系统级性能的细化。解释了拟议的顺序细化方法的优点,并解释了全面的不确定性改进方法,然后应用于NASA Langley不确定性量化挑战问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号