首页> 外文会议>International Conference on Metal Forming >Investigation on superplastic deformation behavior and microstructure evolution of TNW700 titanium alloy
【24h】

Investigation on superplastic deformation behavior and microstructure evolution of TNW700 titanium alloy

机译:TNW700钛合金超塑性变形行为及微观结构演化研究

获取原文

摘要

TNW700 titanium is a near-a high temperature titanium alloy, which can be used at 700°C for a short time. The superplasticity behavior and microstructure evolution of TNW700 alloy were investigated by means of isothermal tensile test within the temperature and strain rate ranges from 900° to 975°C and 0.01s~(-1) to 0.0005s~(-1), respectively. The flow stress-strain curves show that deformation temperature, strain rate and strain all play an important role in the superplasticity test of the TNW700 alloy. Flow stress decreases with increasing temperature and decreasing strain rate, and increases with increasing strain. Meanwhile, the TNW700 alloy exhibits a longer hardening stage, especially at the lower strain rates, which may be related to the presence of (ZrSi) precipitated phases. The microstructure evolution observed by scanning electron microscope (SEM) indicate that (ZrSi) precipitated phases are mainly distributed at a and β phase boundaries. The volume fraction and the grain size of β phase gradually increase with increasing temperature and decreasing strain rate, and the influence of temperature on it is greater than that of the strain rate, especially at high temperatures. Grain coarseness caused by dynamic and static growth is the main cause of stress hardening. The strain rate sensitivity exponent (m) was calculated to identify the dominant deformation mechanisms under various deformation parameters.
机译:TNW700钛是近乎高温钛合金,可在700℃下使用短时间。通过温度和应变速率的等温拉伸试验研究了TNW700合金的超塑性行为和微观结构演化,分别为900°至975℃和0.01〜(-1)至0.0005〜(-1)。流量应力 - 应变曲线表明,变形温度,应变率和菌株所有在TNW700合金的超塑性测试中发挥着重要作用。随着温度的增加和应变速率降低,流量应力降低,随着应变的增加而增加。同时,TNW700合金表现出较长的硬化阶段,尤其是较低的应变率,这可能与(ZRSI)沉淀相的存在有关。通过扫描电子显微镜(SEM)观察的微观结构演化表明(ZRSI)沉淀的相主要分布在A和β相边界处。体积分数和β相的晶粒尺寸随着温度的增加和菌株率降低而逐渐增加,温度对其的影响大于应变率,特别是在高温下。由动态和静态增长引起的谷物粗糙是应力硬化的主要原因。计算应变率灵敏度指数(M)以识别各种变形参数下的主要变形机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号