【24h】

Supercapacitors Specialities - Materials Review

机译:SuperCapacitors Specialties - 材料审查

获取原文

摘要

The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400- 500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.
机译:的电极材料是超级电容器电池性能的重要组成部分。因为它是已知的市售电池和超级电容器性能对比揭示了超级电容器设备显著较低的能量存储能力。商用的超级电容器电池的能量密度被限制在10瓦时/公斤,而该共同铅酸电池达到35-40瓦时/公斤。用于锂离子电池比100瓦时的值更高/ kg的是容易获得的。然而,超级电容器也被称为超级电容器或电化学电容器具有与电池相比其他优点。因此,许多努力已经在过去几年以增加电化学电容器的存储能量密度。很多从发表的作品(研究和审查论文,专利和报告)的结果都可以在这个时候。这次审查的目的是迄今取得的进展为使用新材料的介绍,并接近了超级电容器的电极,重点是实际应用的能量存储能力。许多报道的结果是指纳米结构化的碳材料和相关的复合物,用于实验的电极的制造。比电容和比能量很少显露作为进行调查的主要结果。因此,对于nanoprous(激活)基于碳的电极的比电容高达200-220 F /克被提及的有机电解质,而对于水电解质,该值被限制为400- 500°F / g以下。到比电容显著贡献可以从除了双电层效应的电极 - 电解质界面快速法拉第反应。相应的能量密度被限制在30-50瓦时/公斤,有机电解质和12-17瓦时/公斤水电解质。然而,这样的性能指标用于单纯的在电极中使用的碳材料。对于超级电容器单元,其中,两个电极以及其它材料单元组装和包装使用时,上面提到的值必须被通过因子高于四个分割。其结果是,一个原型电池的比能量,几乎不可能超过10瓦时/公斤,因为与现有的制造技术的困难。基于石墨烯材料和碳纳米管和不同的复合材料已经在过去几年中报道了许多实验中被使用。然而,尽管这些材料中,在与活化的或纳米多孔碳的比较比电容的显著增加或比能的的优异的性能的不实现。氧化还原物质如金属氧化物或与不同的纳米结构化的碳材料(纳米复合电极)组合的导电聚合物的用途已经发现,向特定电容的或特定的能量进一步增加。然而,少数结果报告实际细胞这样的材料。许多结果对三个电极系统只报当电极在实际超级电容器电池中使用显著差异是可能的。在电极制造多的实验用超级电容器单元与已知的电化学存储材料进一步改进是必需的。设备原型和商业产品与朝15-20瓦时的能量密度/公斤才得以实现。这些可以是用于进一步超级电容器装置的研究和开发的里程碑,缩小电池和超级电容器之间的存储能量差距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号