首页> 外文会议>SEG Houston 2013 >A genetic algorithm approach to evaluate models for electrical conductivity response of shaly sand reservoir, based on volumetric approach.
【24h】

A genetic algorithm approach to evaluate models for electrical conductivity response of shaly sand reservoir, based on volumetric approach.

机译:基于体积方法,一种遗传算法评价谢根砂储层电导率响应模型。

获取原文

摘要

This paper focuses on evaluation of three models; 1) Bussian (1983), 2) Mixture (Korvin, 1982; Technov, 1998) and 3) Glover et al. (2000) for electrical conductivity response of shaly sand reservoir based on volumetric approach and looking for some scheme to solve corresponding equations better than the used schemes so far in literature. As all the models result in non-linear equations, so, there was a need of non-linear scheme to solve these equations. Genetic algorithm (GA), implementing the concept of stretching (Stoffa and Sen, 1991) has been applied to solve non-linear equations and to interpret experimental data of the sample C-26 from Waxman and Smits (1968) paper. The same job has been done by Lima et al. (1995), using the grid search method by minimizing the chi-square error (Bevington, 1969) with a relative RMS error 10.11% for Bussian model and 14.03% for Mixture model. A great improvement is obtained using GA with a relative RMS error 2.47% for Bussian model and 3.92% for mixture model. For Glover's model which was not evaluated by Lima et al., it was difficult to obtain a relative RMS error less than 13% using GA. Lima et al. (2005) have pointed out that Bussian model shows anomalous behaviour in low salinity range, so, a modified Bussian equation is proposed for low salinity range which is tested for two cases; 1) matrix conductivity - fluid conductivity, leads to bulk conductivity ~ fluid conductivity ~ matrix conductivity irrespective of values of other parameters because the system turns to a single phase system and 2) For very small value of porosity, bulk density tends to matrix conductivity for low salinity range.
机译:本文重点介绍了三种模型的评估; 1)Bussian(1983),2)混合物(Korvin,1982; Technov,1998)和3)Glover等。 (2000)基于体积探测和寻找一些方案的谢莱砂储层的电导率响应,以便在迄今为止文献中的使用方案更好地解决了一些方案。由于所有模型导致非线性方程,因此需要非线性方案来解决这些方程。遗传算法(GA),实现了拉伸(Stoffa和Sen,1991)的概念,用于解决非线性方程,并从蜡烛和SMITS(1968)纸上解释样品C-26的实验数据。 Lima等人已经完成了同样的工作。 (1995),通过最小化Chi-Square误差(BEVINGTON,1969),使用相对rms误差10.11%的BUSSIAN模型和14.03%的混合模型来使用电网搜索方法。使用Ga具有相对rms误差的GA对Bussian模型的相对率误差和3.92%获得了巨大的改进。对于Gima等人未评估的格洛弗的模型,难以使用GA小于13%的相对RMS误差。 Lima等人。 (2005)已经指出,Bussian模型在低盐度范围内显示出异常行为,因此,提出了一种改进的Bussian方程,用于低盐度范围,其用于两种情况; 1)矩阵电导率 - 流体电导率,导致散热〜流体导电性〜矩阵电导率,与其他参数的值无关,因为系统转向单相系统和2)对于非常小的孔隙值,堆积密度倾向于矩阵电导率低盐度范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号