首页> 外文会议>IAC >A SIMULATION TOOL FOR SPACE SITUATIONAL AWARENESS: NEAR EARTH OBJECTS
【24h】

A SIMULATION TOOL FOR SPACE SITUATIONAL AWARENESS: NEAR EARTH OBJECTS

机译:空间情境感知的模拟工具:靠近地球对象

获取原文

摘要

A simulation tool for Near Earth Objects (NEO) orbit determination by means of optical measurements is presented. The peculiarity of the simulator is the use of high order.methods based on Differential Algebra (DA) techniques. State-of-the art tools are mostly based on either linear methods or nonlinear Monte Carlo simulations. The main advantage of linear methods stays in their problem simplification, but their accuracy drops off rapidly for large uncertainty sets. Classical Monte Carlo simulations provide true statistics, but are computationally intensive. DA techniques are used to overcome the above issues, supplying the tools to compute arbitrary order derivatives of functions within a computer environment with limited computational effort. The availability of the high order Taylor expansions is exploited to manage problem uncertainties. The tool includes a simulator of optical observations, DA-based algorithms for NEO preliminary and accurate orbit determination. Angular measurements simulation is based on the propagation in time of initial asteroid state through multi-body dynamics; aberration, precession and nutation effects may be taken into account by the simulator. Preliminary orbit determination (POD) is based on Lambert's and Kepler's problems and uses the real solutions of the classical Gauss method 8~(th) order polynomial as first guesses of an iterative procedure. A better convergence with respect to Gauss method is achieved. Observations uncertainties are analytically mapped to the phase space as high-order multivariate Taylor polynomials. When more than three observations are available, the tool applies a high order Extended Kalman filter, initialized by the POD solution. The uncertainties related to the POD are propagated forward in time by exploiting the high order expansion of the flow of the dynamics. Thus, the initial covariance is nonlinearly and analytically propagated up to the next measurement. The performance of the tool is analysed by running the algorithms on a list of real Near Earth Asteroids and simulated topocentric observations.
机译:介绍了通过光学测量的近地对象(Neo)轨道轨道测定的仿真工具。模拟器的特殊性是使用高阶。基于差分代数(DA)技术的方法。最先进的工具主要基于线性方法或非线性蒙特卡罗模拟。线性方法的主要优点保持了它们的问题简化,但它们的准确性迅速下降,以便大型不确定性集。古典蒙特卡罗模拟提供真实的统计数据,但是计算密集的。 DA技术用于克服上述问题,提供工具,以计算计算机环境中的任意顺序衍生功能,其计算工作有限。高阶泰勒扩展的可用性被利用来管理问题不确定性。该工具包括光学观测的模拟器,基于DA的NEO初步和精确轨道确定的基于DA的算法。角度测量仿真基于通过多体动态的初始小行星状态的时间传播;模拟器可以考虑像差,进样和营养效果。初步轨道确定(POD)基于Lambert和Bepler的问题,并使用经典高斯方法8〜(Th)阶多项式的真实解作为迭代过程的第一猜测。实现了相对于高斯方法的更好的收敛。观察不确定性被分析地映射到相位空间,如同高阶多元泰勒多项式。当有三个以上的观察结果时,该工具应用一台高阶扩展卡尔曼滤波器,由POD解决方案初始化。与POD相关的不确定性通过利用动态流量的高阶扩展来及时在时间上繁殖。因此,初始协方差是非线性的并且分析地传播到下一个测量。通过在真实的近地区小行星和模拟顶端观测的真实列表中运行算法来分析该工具的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号