首页> 外文会议>IEEE Nuclear Science Symposium >Dosimetry of regressing tumors in 131I internal emitter therapy using patient data from multiple, integrated CT-SPECT images1
【24h】

Dosimetry of regressing tumors in 131I internal emitter therapy using patient data from multiple, integrated CT-SPECT images1

机译:使用来自多个集成的CT-SPECT图像 1 的患者数据,在 131 i内部发射器治疗中回归肿瘤的剂量测定

获取原文

摘要

Accurate tumor dosimetry in internal emitter therapy requires modeling both the spatial and temporal variation of absorbed dose rates in tumor volumes. Generally, 3D absorbed dose distributions can be computed only under the approximation that the time dependence of tumor activity is spatially uniform, since 3D, time-varying patient measurement data is not available. However, in a pilot study at our clinic involving follicular lymphoma patients being treated with 131I tositumomab, registered SPECT and CT images are acquired with an integrated scanner at multiple times after both tracer and therapy administration, thus providing the extensive data required for detailed absorbed dose computations. In a previous work we described a method for the Monte Carlo computation of 3D absorbed dose distributions with spatially varying time-activity distributions in tumors. Multiple time point CT images were registered to a reference CT image which was used to define a fixed patient geometry, and voxel-based time-activity curves were derived from the registered SPECT images and numerically integrated to yield a 3D integrated activity map. Because this method relies on a single CT image to define the patient, it is not applicable for regressing, proliferating, or deforming tumor volumes. In the current work, we present results using a new method for computing absorbed dose that accounts for tumor deformation. Absorbed dose rate maps are calculated via Monte Carlo at each time point using the registered SPECT images to describe the activity distribution and the CT images to define the patient volume. These time-dependent 3D absorbed dose rate maps are then registered using transformation variables determined by a mutual information registration computation applied to the CT images. Time-integrated absorbed dose distributions are then computed by modeling the time dependence of dose rate between time steps and the tumor volume in the presence of deformation.
机译:内部发射极治疗中精确的肿瘤剂量测定需要在肿瘤体积中建模吸收剂量率的空间和时间变化。通常,可以仅在近似下计算3D吸收剂量分布,即肿瘤活动的时间依赖性在空间均匀,因为3D,时变患者测量数据不可用。然而,在我们的临床研究中,涉及用131i Tosyumab处理的滤泡淋巴瘤患者,在跟踪器和治疗给药后多次通过集成扫描仪获得登记的SPECT和CT图像,从而提供详细吸收剂量所需的广泛数据计算。在先前的工作中,我们描述了一种在肿瘤中具有空间变化的时活性分布的3D吸收剂量分布的蒙特卡罗计算的方法。将多个时间点CT图像注册到用于定义固定患者几何形状的参考CT图像,并且基于体素的时活曲线从登记的SPECT图像导出,并在数字上集成以产生3D集成活动图。因为该方法依赖于单个CT图像来定义患者,所以它不适用于回归,增殖或变形肿瘤体积。在当前的工作中,我们使用一种用于计算肿瘤变形的吸收剂量的新方法的结果。使用登记的SPECT图像在每个时间点通过Monte Carlo计算吸收的剂量率图以描述活动分布和CT图像来定义患者体积。然后使用由应用于CT图像的互信息登记计算确定的变换变量来登记这些时间依赖的3D吸收剂量率图。然后通过在变形存在下建模剂量率和肿瘤体积之间的剂量率的时间依赖性来计算时间综合的吸收剂量分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号