首页> 外文会议>IEEE Nuclear Science Symposium >Micro-machined retro-reflector for improving light yield in ultra-high resolution gamma cameras
【24h】

Micro-machined retro-reflector for improving light yield in ultra-high resolution gamma cameras

机译:微加工的复古反射器,用于提高超高分辨率伽马摄像机中的光产量

获取原文

摘要

High-resolution imaging with X-rays and gamma rays can be achieved through scintillation crystals that are optically coupled to Charge Coupled Devices (CCDs). The energy and the interaction position of individual gamma quanta can be estimated by real time image analysis of scintillation light flashes (“photon-counting mode”), provided that the images of the CCD can be read out fast enough. The back-illuminated Electron-Multiplying CCD (BI-EMCCD) is well-suited for fast read-out, since even at high frame rates it has extremely low read-out noise thanks to an internal gain mechanism. BI-EMCCDs can achieve a quantum efficiency of over 90% for the detection of photons in the range of 500 to 650 nm. Here we investigate a gamma camera based on a back-illuminated EMCCD, coupled to a 1.2- millimeter-thick continuous CdWO4 crystal by means of a fiberoptic window. In order to improve the performance of our gamma camera, we have optimized the optical coating of the scintillation crystal. We observe enhancement of the optical output of the crystal by application of reflective optical coatings (i.e. retro-reflective and mirror-reflective) when compared to absorptive coating or no coating on top of the crystal (the side of the crystal that is not read out by the EMCCD). The retroreflective coating has been designed and micro-machined inhouse for this purpose specifically. Applying our set-up to Tc- 99m imaging, we found that use of this retro-reflector improves the intrinsic spatial resolution (Full Width at Half Maximum) by about 17 %, allowing us to obtain a resolution of 86 μm, compared to 104 μm when using a non-coated crystal. Therefore, the micro-machined retro-reflector is the optimal coating for our application. We conclude that the use of our enhanced CCD-based gamma cameras offers great potential for applications such as in vivo imaging of gamma emitters.
机译:通过光耦合到充电耦合器件(CCD)的闪烁晶体,可以实现具有X射线和伽马射线的高分辨率成像。通过闪烁光闪烁的实时图像分析可以估计单个伽马量子的能量和相互作用位置(“光子计数模式”),只要可以读出CCD的图像足够快。背部照明电子 - 乘法CCD(Bi-EMCCD)非常适合于快速读出,因为由于内部增益机制,即使在高帧速率下也具有极低的读出噪声。 Bi-EMCCD可以达到超过90%的量子效率,用于检测500至650nm的光子。在这里,我们通过纤维窗耦合到基于背照射的EMCCD的伽马摄像机,耦合到1.2毫米厚的连续CDWO 4 晶体。为了提高伽玛相机的性能,我们优化了闪烁晶体的光学涂层。通过施加与吸收涂层或在晶体顶部的涂层(未读出的晶体侧面的涂层(即,晶体的侧面)的反射光学涂层(即重新反射和反射和反射)来观察晶体的光输出的增强由EMCCD)。逆向反射涂层专门设计和微机器内部机械涂层。将我们的设置应用于TC-99M成像,我们发现使用该复古反射器的使用提高了内在空间分辨率(半最大宽度)约17%,允许我们获得86μm的分辨率,而104相比使用非涂覆晶体时μm。因此,微加工的复古反射器是我们应用的最佳涂层。我们得出结论,使用我们的增强的基于CCD的伽马相机的应用为γ发射器的体内成像等应用提供了很大的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号