首页> 外文会议>Symposium on Discrete Algorithms >Exponentially improved algorithms and lower bounds for testing signed majorities
【24h】

Exponentially improved algorithms and lower bounds for testing signed majorities

机译:用于测试签名多数的指数改进的算法和下限

获取原文
获取外文期刊封面目录资料

摘要

A signed majority function is a linear threshold function f : {+1, -1}~n → {+1, -1} of the form f(x) = sign(∑_(i=1)~n σ_i x_i) where each σ_i ∈ {+1, -1}. Signed majority functions are a highly symmetrical subclass of the class of all linear threshold functions, which are functions of the form sign(Σ~(i=l)~n w_ix_i ~ θ) arbitrary real w_i,θ. We study the query complexity of testing whether an unknown f : {+1, - l}~n → {+1, -1} is a signed majority function versus e-far from every signed majority function. While it is known [26] that the broader class of all linear threshold functions is testable with poly(l/∈) queries (independent of n), prior to our work the best upper bound for signed majority functions was O(√n) ?poly(1/∈) queries (via a non-adaptive algorithm), and the best lower bound was Ω(log n) queries for non-adaptive algorithms [27]. As our main results we exponentially improve both these prior bounds for testing signed majority functions: ? (Upper bound) We give a poly (log n, 1/∈)-query adaptive algorithm (which is computationally efficient) for this testing problem; ? (Lower bound) We show that any non-adaptive algorithm for testing the class of signed majorities to constant accuracy must make n~(?(1)) queries. This directly implies a lower bound of Ω(log n) queries for any adaptive algorithm. Our testing algorithm performs a sequence of restrictions together with consistency checks to ensure that each successive restriction is "compatible" with the function prior to restriction. This approach is used to transform the original n-variable testing problem into a testing problem over poly (log n, 1/e) variables where a simple direct method can be applied. Analysis of the degree-1 Fourier coefficients plays an important role in our proofs'.
机译:签名的多数函数是形式f(x)= sign的线性阈值函数f:{+1,-1}〜n→{+1,-1}(σ_(i = 1)〜nΣ_ix_i)其中每个σ_i∈{+1,-1}。符号的多数函数是所有线性阈值函数的类的高度对称的子类,它们是表单标志的功能(σ〜(i = l)〜n w_ix_i〜θ)任意实际w_i,θ。我们研究了测试的查询复杂性是否是未知的f:{+1, - l}〜n→{+1,-1}是签名的多数函数与远离每一个符号的多数函数的e-for。虽然已知[26],但是,所有线性阈值函数的更广泛类别可用于多(L /∈)查询(独立于n),在我们的工作之前,签名多数函数的最佳上限是O(√N) ?Poly(1 /∈)查询(通过非自适应算法),并且最佳下限是非自适应算法的ω(log n)查询[27]。作为我们的主要结果,我们对测试签署的多数职能进行了指数提高这些先前的界限: (上限)我们为该测试问题提供了多(log n,1 /∈)-query自适应算法(计算效率);还是(下限)我们显示任何用于测试签名多数常量准确性的类别的非自适应算法必须使n〜(?(1))查询。这直接暗示任何自适应算法的Ω(log n)查询的下限。我们的测试算法与一致性检查一起执行一系列限制,以确保在限制之前,每个连续限制与功能“兼容”。这种方法用于将原始的n变量测试问题转换为测试问题,通过Poly(log n,1 / e)变量,其中可以应用简单的直接方法。学位-1傅里叶系数的分析在我们的证据中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号