首页> 外文会议>ISPRS Congress >APPLICATION OF VEHICLE DYNAMIC MODELING IN UAVS FOR PRECISE DETERMINATION OF EXTERIOR ORIENTATION
【24h】

APPLICATION OF VEHICLE DYNAMIC MODELING IN UAVS FOR PRECISE DETERMINATION OF EXTERIOR ORIENTATION

机译:车辆动力学建模在无人机中的应用精确测定外观方向

获取原文

摘要

Advances in unmanned aerial vehicles (UAV) and especially micro aerial vehicle (MAV) technology together with increasing quality and decreasing price of imaging devices have resulted in growing use of MAVs in photogrammetry. The practicality of MAV mapping is seriously enhanced with the ability to determine parameters of exterior orientation (EO) with sufficient accuracy, in both absolute and relative senses (change of attitude between successive images). While differential carrier phase GNSS satisfies cm-level positioning accuracy, precise attitude determination is essential for both direct sensor orientation (DiSO) and integrated sensor orientation (ISO) in corridor mapping or in block configuration imaging over surfaces with low texture. Limited cost, size, and weight of MAVs represent limitations on quality of onboard navigation sensors and puts emphasis on exploiting full capacity of available resources. Typically short flying times (10-30 minutes) also limit the possibility of estimating and/or correcting factors such as sensor misalignment and poor attitude initialization of inertial navigation system (INS). This research aims at increasing the accuracy of attitude determination in both absolute and relative senses with no extra sensors onboard. In comparison to classical INS/GNSS setup, novel approach is presented here to integrated state estimation, in which vehicle dynamic model (VDM) is used as the main process model. Such system benefits from available information from autopilot and physical properties of the platform in enhancing performance of determination of trajectory and parameters of exterior orientation consequently. The navigation system employs a differential carrier phase GNSS receiver and a micro electro-mechanical system (MEMS) grade inertial measurement unit (IMU), together with MAV control input from autopilot. Monte-Carlo simulation has been performed on trajectories for typical corridor mapping and block imaging. Results reveal considerable reduction in attitude errors with respect to conventional INS/GNSS system, in both absolute and relative senses. This eventually translates into higher redundancy and accuracy for photogrammetry applications.
机译:无人驾驶飞行器(UAV)和特别是微空气车辆(MAV)技术以及增加的成像装置的价格和降低价格的进步导致摄影测量中的MAV越来越多地使用。 MAV映射的实用性具有在绝对和相对感官(连续图像之间的姿态变化)中以足够的精度确定外向方向(EO)参数的能力。虽然差分载波相位GNSS满足CM级定位精度,但精确的姿态确定对于直接传感器方向(DISO)和走廊映射中的集成传感器方向(ISO)是必不可少的,或者在具有低纹理的表面上成像。 MAV的有限成本,尺寸和重量,代表船上导航传感器质量的限制,并强调利用可用资源的全部容量。通常,飞行时间短(10-30分钟)也限制了估计和/或校正因素的可能性,例如传感器未对准和惯性导航系统(INS)的态度初始化差的态度。该研究旨在提高绝对和相对感官中姿态确定的准确性,没有额外的传感器。与典型INS / GNSS设置相比,这里提出了新的方法,以实现集成状态估计,其中车辆动态模型(VDM)用作主要过程模型。这种系统从自动驾驶仪和平台的物理性质中受益于增强轨迹的测定性能和外向方向参数的性能。导航系统采用差分载波相位GNSS接收器和微电机械系统(MEMS)级惯性测量单元(IMU)以及来自自动驾驶仪的MAV控制输入。 Monte-Carlo仿真已经在典型走廊映射和块成像的轨迹上进行。结果揭示了常规INS / GNSS系统的态度误差的显着降低,绝对和相对感官。这最终转化为摄影测量应用程序的更高冗余和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号