首页> 外文会议>US Rock Mechanics Symposium >Evolution of Induced Seismicity Due to Interactions between Thermal, Hydraulic, Mechanical and Chemical Processes in EGS Reservoirs
【24h】

Evolution of Induced Seismicity Due to Interactions between Thermal, Hydraulic, Mechanical and Chemical Processes in EGS Reservoirs

机译:EGS储层中热,液压,机械和化学过程之间的相互作用诱导地震性的演变

获取原文

摘要

We explore the complex interaction of coupled thermal, hydraulic, mechanical and chemical (THMC) processes that influence the evolution of EGS reservoirs in general, and in particular with reference to strong, low-permeability reservoirs with or without relic fracturing. We define and describe dominant behaviors that evolve with the evolution of the reservoir: from short-term stimulation through mid-term production and culminating in long-term decline. The injection of fluid under pressure in a rock mass may change the effective stress at early times and result in micro seismicity induced by shear events on reactivated fractures. Changes in thermal stress and chemical changes in the mid- to long-term injection period may also generate seismic activity at later times. In most geothermal reservoirs the induced seismicity results from fluid injection and migrates within the reservoir with time as driven by the various interactions of thermal, hydraulic, mechanical and chemical processes. These processes migrate through the reservoir as fronts at a variety of different length-scales and timescales. We use a continuum model of reservoir evolution subject to coupled THMC processes to explore the evolution of stimulation- and production-induced seismicity in a prototypical EGS reservoir. The model which is discussed here is capable of accommodating changes in stress that result from change in fluid pressure as well as thermal stress and chemical effects. This model is applied to both a single injector and doublet geometry to explore the spatial and temporal migration for triggering of seismicity as stimulation evolves into production. We use varied fracture network geometries in our models to examine various stimulation and production scenarios. The individual models are realized by different fracture density, fracture distribution (~lm to 100m) and spacing between fractures (~lm to 10m). The approach is successfully calibrated against short-term observations in the Cooper Basin (Australia) and applied to explore the expected evolution of moment magnitude and the triggering of seismicity. Modeled b-values (~0.68 to 0.72) at different locations and times are in good agreement with observations (~0.7 to 0.8). For longer injection periods, predicted changes in energy release generate moment magnitudes which vary from -2 to 2 for small to large fractures. Tracking of the hydrodynamic and thermal fronts illustrates a transition in the triggering of seismicity with time. At early time (days to months) - higher flow rates driven by the fluid pressure result in, larger magnitude events. For later time (>1year) thermal drawdown and potentially chemical influences principally trigger the seismicity but result in a reduction in both the number of events and their magnitude. As a result of this decrease in the number of events (both large and small) both b- and a-values decrease with time.
机译:我们探索了影响一般EGS油藏的演变耦合热,液压,机械和化学(THMC)过程的复杂的相互作用,特别是参照具有或不具有遗迹压裂强,低渗透性储层。我们定义和描述,随着水库的演变进化主导行为:通过中期产量从短期刺激和长期下跌最终。流体在压力下的在岩体的注射可在早期改变有效应力,并导致由活化骨折的剪切事件引发的微地震活动。在热应力和在中期化学变化以长期喷射时期的变化还可以产生在稍后时间地震活动。在大多数热储从与通过热,液压,机械和化学过程的各种相互作用驱动时间在贮存器内的流体注入和迁移的诱发地震结果。这些过程通过储层作为前沿在各种不同的长度尺度和时间尺度的迁移。我们使用储层进化对象的连续模型到耦合THMC过程探索原型EGS储stimulation-和生产诱发地震的演变。这是这里所讨论的模型是能够容纳在应力变化的,从在流体压力变化以及热应力和化学效应的结果。该模型被施加到一个单一的喷射器和双峰几何探索地震活动的触发作为刺激演变成生产的空间和时间迁移。我们使用不同的裂缝网络的几何形状,我们的模型来检验各种刺激和生产场景。单独的模型是由不同的裂缝密度,裂缝分布(〜LM到100米)和骨折之间的间隔(〜LM 10米)来实现。该方法已成功校准反对在库珀盆地(澳大利亚)短期观测和应用探索矩震级的预期发展和地震的触发。仿照b值(0.68〜0.72),在不同的地点和时间都吻合良好观测(〜0.7〜0.8)。对于较长的喷射期间,在能量释放预测变化产生力矩量值从-2到2的小到大的骨折会发生变化。液力和热方面的跟踪示出了地震活动随时间的触发的过渡。在较早的时间(几天到几个月) - 由流体压力导致,幅度较大的事件驱动更高的流量。购买时间(>1年)热牵伸和潜在的化学影响主要触发地震活动,但导致在事件的数量和它们的大小的减少。由于这种减少在事件数(大的和小的)两个B-和一个值随时间而减少的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号