【24h】

Direct Detection of Buried Orebodies Using Gradiometry

机译:使用毕格测定的直接检测掩埋的矿物学

获取原文
获取外文期刊封面目录资料

摘要

The routine use of gravity gradiometry for the detection of orebodies with no outcrop is now being undertaken. The commodities and orebody styles range from banded iron ore formations to volcanogenic massive sulfi de (VMS) style polymetallic deposits. This recent innovation of fl ying gravity gradiometry was pioneered by BHP Billiton and Lockheed Martin with the Falcon technology (Lee, 2001), and now two additional systems, also using Lockheed Martin instruments, are deployed. In South Africa, magnetic gradiometry is being developed and deployed with the same objectives in mind. In this case, a system from Institute of Photonic Technology (IPHT) is being used. The detectable wavelengths from such systems have decreased to less than 200 m in the last year, and it is expected in 2011 that wavelengths to less than 100 m, with anomaly signal strengths of less than 2 Eotvos for gravity gradiometry will be viable. The key to these advances lies in the improvements of processing software and geological modelling. In particular, methods using all the tensor components are starting to be routinely deployed to fi lter, level and grid the observed signal. These methods do, however, require full insight and understanding of the reference coordinate systems used by the various instrument designers and survey operators. The digital terrain models need also to be observed to an accuracy of better than 20 m cell sizes, using such techniques as Lidar. Then the terrain effects can be modelled. The topographic surface represents the largest and most proximal density contrast encountered in an airborne survey. Hence terrain effects can have signifi cant impact on airborne gravity gradiometry data. A decorrelation of the terrain effect with the observed signal requires a method of best fi tting with a regional surface density. A novel technique has been developed for this purpose. This technique uses a tensor algebra to estimate a density between 1 - 4 g/cc that explains the average observed signal. Armed with this result, the anomalous buried bodies can be revealed by subtraction.
机译:用于检测矿体没有露头的常规使用重力梯度测量是目前正在开展。商品和矿体风格从带状铁矿地层以火山块状sulfi德(VMS)风格的金属矿床。这最近佛罗里达州英重力梯度测量的创新是由必和必拓公司和洛克希德·马丁与猎鹰技术(李,2001)率先推出的,现在两个额外的系统,还采用洛克希德·马丁公司的仪器,部署。在南非,磁梯度测量正在开发和充分考虑了同一目标部署。在这种情况下,正在使用由光子技术(IPHT)研究所的系统。从这样的系统中的可检测的波长在过去一年降低到小于200微米,它是在2011年预期波长小于100米,小于2个厄特沃什的用于重力梯度异常的信号强度将是可行的。这些关键的进步的处理软件和地质建模的改进谎言。特别是,使用所有的张量分量的方法开始被常规地部署到滤波器,水平和网格所观察到的信号。这些方法,但是,需要全面了解和参考的理解坐标各种仪器设计者和运营商的调查所使用的系统。数字地形模型也需要被观察到更好的大于20μm的孔尺寸的精确度,使用这样的技术如激光雷达。然后,地形的影响可以被模拟。地形表面代表在航测中遇到的最大的和最近端密度的对比。因此,地形效应可能对航空重力梯度测量数据之意义的影响。与所观察到的信号的地形效应的去相关,需要最佳拟合的具有区域表面密度的方法。一种新的技术已经开发了用于这一目的。这种技术使用一个张量代数来估计1之间的密度 - 立方厘米为4g /,解释了观察到的平均信号。这个结果的武装,异常被埋葬的尸体可以用减法透露。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号