首页> 外文会议>European Fuel cell Forum >Fuel Processing in Ceramic Microchannel Reactors for SOFC Applications
【24h】

Fuel Processing in Ceramic Microchannel Reactors for SOFC Applications

机译:用于SOFC应用的陶瓷微通道反应器中的燃料加工

获取原文

摘要

Effective operation of practical solid-oxide fuel cell (SOFC) systems relies upon heat exchangers and chemical reactors. System efficiency can be improved and cost reduced by combining unit processes into single components. This work describes a ceramic microchannel reactor that achieves process intensification by combining heat-exchanger and catalytic-reactor functions to provide high-quality syngas to the SOFC stack. Microchannel heat exchangers and reactors can deliver very high performance in small packages. Such heat exchangers are typically fabricated from stainless-steel metal sheet using diffusion-bonding processes. Ceramic microchannel reactors offer some significant advantages over their metallic counterparts, including very-high-temperature operation, corrosion resistance in harsh chemical environments, low cost of materials and manufacture, and compatibility with ceramic-supported catalysts. In this work, reactor design is based on the results of three-dimensional computation fluid dynamics (CFD) simulations using ANSYS/FLUENT. Models include the conjugate heat transfer between fluid- and solid-phase materials, and are used to create a design that achieves high reactor performance while meeting the unique requirements of the reactor- fabrication process. This CFD model has been coupled with CHEMKIN, a powerful chemical- kinetics modelling tool, to include simulation of chemically reacting flow. The current reactor design utilizes four layers of microchannels. Inert heat exchange in two of the layers provides thermal energy to drive methane steam-reforming reactions on the other two catalyst-coated layers. The reactor body is fabricated by CoorsTek, Inc. (Golden, CO, USA) using 94% alumina and high-volume-manufacturing methods. High-temperature co- sintering of the four layers results in a single hermetically sealed polycrystalline ceramic body. Catalytic activity is enabled by washcoating a rhodium catalyst over an alumina- ceria oxide support structure deposited within the reactor. Heat-exchanger effectiveness of up to 88% has been demonstrated. Reactive heat- exchanger testing has been completed on steam reforming of methane with 90% methane conversion and high selectivity to syngas. Experimental results are validated and interpreted using the ANSYS/FLUENT model.
机译:实际固体氧化物燃料电池(SOFC)系统的有效操作依赖于热交换器和化学反应器。通过将单元流程组合成单个组件,可以提高系统效率并降低成本。这项工作描述了一种陶瓷微通道反应器,通过组合热交换器和催化反应器的功能来实现过程强化,以向SOFC堆叠提供高质量的合成法。微通道换热器和反应器可以在小包装中提供非常高的性能。这种热交换器通常使用扩散键合工艺由不锈钢金属板制成。陶瓷微通道反应堆提供了通过金属对应物的一些显着优势,包括非常高温操作,苛刻的化学环境,材料成本低,以及与陶瓷负载型催化剂的相容性。在这项工作中,反应堆设计基于使用ANSYS / FLUENT的三维计算流体动力学(CFD)模拟的结果。模型包括流体和固相材料之间的共轭热传递,并用于制造一种设计,该设计在满足反应器制造过程的独特要求时实现高反应器性能。该CFD模型已加上Chemin,一种强大的化学动力学建模工具,包括化学反应流动的模拟。电流反应器设计利用四层微通道。两个层中的惰性热交换提供热能,以在其他两个催化剂涂覆的层上驱动甲烷蒸汽重整反应。反应器主体由Coorstek,Inc。(Golden,Co,USA)制造,使用94%的氧化铝和高储备制造方法。四层的高温共烧结导致单个气密密封的多晶陶瓷体。通过将铑催化剂在沉积在反应器内的氧化铝氧化物载体结构上通过将铑催化剂进行洗涤铝催化剂来实现催化活性。已经证明了高达88%的热交换器有效性。反应热交换器测试已经完成甲烷蒸汽重整,90%甲烷转化率和对合成气的高选择性。使用ANSYS / FLUENT模型验证和解释实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号