首页> 外文会议>European Fuel cell Forum >Thermo-Mechanical Fatigue Behavior of a Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect
【24h】

Thermo-Mechanical Fatigue Behavior of a Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect

机译:用于固体氧化物燃料电池互连铁素体不锈钢的热机械疲劳行为

获取原文

摘要

The purpose of this study is to investigate the thermo-mechanical fatigue behavior of a ferritic stainless steel (Crofer 22 H) for use as an interconnect material in planar solid oxide fuel cells (pSOFCs). Metallic interconnects are subjected to thermal stresses due to mismatch of coefficient of thermal expansion (CTE) between components and temperature gradients during start-up, steady operation, and shutdown stages in a pSOFC stack. Interconnects under mechanical and thermal cycling loading could suffer a thermo- mechanical fatigue (TMF) damage during operation between periodic start-up and shutdown stages. Therefore, TMF tests under various combinations of mechanical loading at a cyclic temperature range are conducted to study the long-term durability of the Crofer 22 H ferritic steel under SOFC operating conditions in the present study. The TMF tests were performed in air at a cyclic temperature range between 25o C and 800o C to simulate the maximum temperature range of pSOFCs between shutdown and steady operation stages. Cyclic mechanical loading was applied under force control with specified yield strength ratios (YSRs) at 25o C and 800o C to simulate various combinations of thermal stresses generated in interconnects of a pSOFC stack. Various combinations of YSRs ranging from 0.2 to 0.6 of at 25o C and 800o C were selected as the applied peak and valley mechanical loads at the temperatures of 25o C and 800o C in TMF tests. Experimental results show the TMF life of Crofer 22 H is mainly dominated by a fatigue mechanism involving cyclic plastic deformation. The relation between TMF life and YSR at 800o C for all given loading combinations is well described by a logarithmic function. Fractographic observation indicates a ductile fracture and fatigue cracking patterns in Crofer 22 H specimens. A fatigue mechanism involving cyclic plastic deformation is the dominant factor in determining the fracture mode of TMF behavior.
机译:本研究的目的是研究铁素体不锈钢(CROFER 22 H)的热机械疲劳行为,用作平面固体氧化物燃料电池(PSOFC)中的互连材料。由于在PSOFC堆叠中的启动,稳定操作和关闭阶段期间,金属互连由于组件和温度梯度之间的热膨胀系数(CTE)不匹配而受到热应力。在机械和热循环负载下的互连可能在周期性启动和关闭阶段之间的操作期间遭受热机械疲劳(TMF)损坏。因此,进行了在循环温度范围内的各种机械负载组合的TMF测试,以研究本研究中的SOFC操作条件下CROFER 22 H铁素体钢的长期耐久性。在25O c和800O C之间的循环温度范围内的空气中进行TMF测试,以模拟关断和稳定操作阶段之间的PSOFC的最大温度范围。在25O C和800O C处用指定的屈服强度比(YSRS)的指定屈服强度比(YSRS)施加循环机械载荷,以模拟PSOFC堆叠互连中产生的热应力的各种组合。根据TMF检验,选择在25Oc和800O C的0.2至0.6的ysrs的各种组合作为在25℃和800℃的施加峰和谷机械负载中。实验结果表明,Crofer 22h的TMF寿命主要由涉及循环塑性变形的疲劳机制主导。通过对数函数很好地描述了所有给定的加载组合的TMF寿命和YSR之间的关系。 Fretographic观察表明Crofer 22h标本中的延性骨折和疲劳裂缝图案。涉及循环塑性变形的疲劳机制是确定TMF行为的断裂模式的显着因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号