首页> 外文会议>ASME Bioengineering Conference >DAMAGE ACCUMULATION MODEL, FSI, AND MULTISCALE SIMULATIONS FOR STUDYING THE THROMBOGENIC POTENTIAL OF PROSTHETIC HEART VALVES
【24h】

DAMAGE ACCUMULATION MODEL, FSI, AND MULTISCALE SIMULATIONS FOR STUDYING THE THROMBOGENIC POTENTIAL OF PROSTHETIC HEART VALVES

机译:用于研究假肢心脏瓣膜血栓形成潜力的损伤累积模型,FSI和多尺度模拟

获取原文

摘要

3D physiologic geometry of St. Jude Medical (SJM) valve after implantation was simulated with non-Newtonian two-phase blood model. The simulation used the unsteady Reynolds averaged Navier-Stokes (URANS) approach and the Wilcox k-ω turbulent model. Platelet stress accumulation and the resulting platelet damage were calculated from the results. Thrombogenic potential of two bileaflet MHV geometries was conducted using fluid-structure interaction (FSI) computation. Two commercially available valve geometries, SJM and ATS, which differ mostly in their hinge design, were simulated in a straight geometry with sudden expansion downstream of the valve. The thrombogenic potential of the two valves was based on computed wall shear stresses on the leaflets and cumulative shear stress on multiple particles released during forward and reverse flow phases. Platelet stress accumulation along pertinent trajectories from the FSI studies indicated that the SJM valve has a higher thrombogenic potential then the ATS valve. Flow patterns generated by the valve are conducive to platelet activation provide optimal conditions for activated platelets to interact with each other and form aggregates are hypothesized to be the source of thromboemboli formation, increasing the risk for cardioembolic stroke. The new damage model developed was utilized to estimate the effects of repeated passages and platelet senescence on this thrombogenic potential. Flow and pressure effects on a cell like a platelet can be well represented by a continuum mechanics model down to the order of the μm level. However, the molecular effects of adhesion/aggregation bonds are on the order of nm. Thus we also adopt a discrete particles dynamics (DPD) approach in which the macroscopic model provides information about the flow induced stresses that may activate blood cellular constituents. This multiscale modeling approach concentrates on flow regions in prosthetic devices like MHVs and cardiovascular pathologies that have a high propensity to activate platelets and form aggregates. Preliminary simulations of blood flow in simple geometries using this approach, which widely departs from the traditional continuum approach, is successful in generating viscous blood flow velocity distributions in these geometries.
机译:植入后St.Jude Medical公司(SJM)阀的3D几何生理模拟了与非牛顿两相血液模型。模拟中使用的非定常雷诺平均纳维 - 斯托克斯(URANS)方法和威尔科克斯K-ω湍流模型。血小板应力积累和所得血小板损害从该结果计算。 2个叶MHV几何形状的形成血栓的潜​​在用流体 - 结构交互(FSI)的计算进行。两种市售阀的几何形状,SJM和ATS,其不同主要在他们的铰链设计,进行了模拟直线几何与阀的下游突然膨胀。两个阀的血栓形成潜力是基于对在正向和反向流动相释放多个微粒小叶和累积剪切应力计算的壁剪切应力。沿着从FSI研究相关的轨迹血小板积聚的应力表示,澳博阀门具有更高的血栓形成潜在那么ATS阀。由阀产生的流动图案,有利于血小板活化提供活化的血小板的最佳条件,以与彼此和形式聚集体假设是血栓栓塞形成的源极相互作用,增加了对心源性卒中的风险。开发的新损伤模型来估计这个血栓潜在的重复段落和血小板衰老的作用。流动和像血小板的细胞压力效果可以通过一个连续力学很好地表现模型下至微米级的顺序。然而,粘附/聚合键的分子效应是纳米量级的。因此,我们还采用一个离散颗粒动力学(DPD)方法,其中,宏观模型提供有关可能激活血细胞成分的流动产生的应力的信息。这种多尺度建模方法的浓缩物上流动区域在像MHVs假体装置和心血管疾病具有高的倾向,以激活血小板和形成聚集体。在简单的几何形状的血流量的初步模拟使用这种方法,这从传统的连续法广泛起飞,成功地生成这些几何形状的粘性血流速度分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号