首页> 外文会议>ASME Bioengineering Conference >MECHANICS AND MODELING OF POSTNATAL ARTERIAL DEVELOPMENT IN WILD-TYPE AND ELASTIN-INSUFFICIENT MICE
【24h】

MECHANICS AND MODELING OF POSTNATAL ARTERIAL DEVELOPMENT IN WILD-TYPE AND ELASTIN-INSUFFICIENT MICE

机译:野生型和弹性蛋白 - 不足小鼠产后动脉发育的力学与建模

获取原文

摘要

Large arteries in vertebrates serve as elastic reservoirs that store a portion of the blood volume with systole and discharge it during diastole. This function is made possible by the combination of extracellular matrix (ECM) proteins deposited by the smooth muscle cells (SMCs) in the arterial wall. Elastin and collagen expression in mice is first detectable around embryonic day 14 and peaks around postnatal day (P) 14, returning to baseline levels by P30. During this time, pressure and cardiac output increase significantly before leveling off ~P30 [1]. Hence, the protein amounts and consequent mechanical properties of the arterial wall change simultaneously with the applied hemodynamic loads in a complicated and unknown feedback loop. Using elastin-insufficent mice (eln+/-), we can examine how changes in the relative protein amounts alter the mechanics and hemodynamic forces during postnatal development and begin to understand these feedback signals. The relationships between elastin amounts, arterial stiffness and high blood pressure are especially interesting in light of recent studies showing independent correlations between large artery stiffness and hypertension in humans [2]. The mechanical data must be interpreted using microstructurally-based constitutive models to understand how each component contributes to the overall arterial mechanics. These models can assist with rational design of tissue-engineered arteries and disease treatments for ECM-related pathologies, such as Supravalvular Aortic Stenosis (SVAS). In the current study, we evaluate the geometry, mechanics and hemodynamics of wildtype (WT) and elastin-insufficient (eln+/-) aorta from P3 - P60 and fit the data to a microstructurally-based constitutive model to determine the temporal relationships between ECM amounts, mechanical stimuli and cardiovascular function in mice.
机译:脊椎动物的大动脉用作弹性储层,将一部分血液体积存放在渗透过程中并在舒张期间排出。通过在动脉壁中的平滑肌细胞(SMC)沉积的细胞外基质(ECM)蛋白质的组合可以实现该功能。小鼠中的弹性蛋白和胶原蛋白表达首先在胚胎第14天和胚胎日(P)14周围峰,通过P30返回基线水平。在此期间,在调平之前,压力和心脏输出显着增加〜P30 [1]。因此,蛋白质量和随后的动脉壁的机械性能在复杂且未知的反馈环中的应用血液动力学载荷同时变化。使用Elastin-insuceent小鼠(Eln +/-),我们可以检查相对蛋白质的变化如何改变产后开发过程中的力学和血液动力学力,并开始了解这些反馈信号。近期研究表明人类大动脉僵硬和高血压之间的独立相关性,弹性蛋白量,动脉僵硬和高血压之间的关系特别有趣。必须使用基于微结构的组成型模型来解释机械数据,以了解每个组分如何有助于整体动脉机制。这些模型可以帮助组织工程血管和疾病治疗的合理设计ECM相关的疾病,如主动脉瓣上狭窄(SVAS)。在目前的研究中,我们评估了P3 - P60的野生型(WT)和弹性蛋白 - 不足(ELN +/-)主动脉的几何,力学和血流动力学,并将数据拟合到基于微结构的本构模型,以确定ECM之间的时间关系小鼠的量,机械刺激和心血管功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号