首页> 外文会议>Symposium on International Automotive Technology >A Rapid Temperature Superposition Method to Determine Creep Behavior of Thermoplastics for Automotive Electronics Applications
【24h】

A Rapid Temperature Superposition Method to Determine Creep Behavior of Thermoplastics for Automotive Electronics Applications

机译:一种快速的叠加方法,用于确定汽车电子应用热塑性塑料的蠕变行为

获取原文

摘要

Recent developments in polymer technology have gained automotive industry's attention as a viable alternative for ubiquitous metals. Apart from the design loads envisaged, an automotive part is subjected to multiple environmental loads including variation in ambient temperature. In particular, several automotive electronics applications feature product placements in zones of high temperature (on-engine being the most severe with temperatures exceeding 125°C), which drive the material close to melting points. Exposure to such a harsh environment will have adverse effects on the components (particularly those made of plastics) whose life span is expected to be 20 years. This calls for better characterization of polymers to help predict their behavior during usage. The challenge lies in devising an effective experimental procedure backed with an analytical method to present the material property in a rapidly usable format for technical analysis. Traditional long-term creep test procedures are too time-intensive to suit the current scheme. The focus of this study is on developing a methodology using short time (less than 24 hours) creep tests wherein the interrelationships between Young's Modulus, time and temperature are presented and analyzed. The creep testing technique applied in such an environment has evolved as a promising tool to be used in the design of thermoplastic components. The plots at each temperature are superposed by log at the temperature-dependent shift factor, to form a master curve of sigmoid shape. William-Lendel-Ferry (WLF) relation is used to compute the shift factor. Polycarbonate (LEXAN) is the polymer highlighted in this study. For a viscoelastic material, each loading step makes an independent contribution to the final deformation or extension. A new approach known as Temperature Superposition Method is devised to obtain the temperature dependency of strain at various load levels.
机译:聚合物技术的最新发展已经获得了汽车行业的关注,作为无处不在的金属可行的替代品。除了设想的设计载荷外,汽车部件经受多种环境载荷,包括环境温度的变化。特别是,几个汽车电子应用功能产品展示位置在高温的区域(在发动机是最严重的与温度超过125℃),其驱动该材料接近熔点。暴露于这种恶劣的环境将对其寿命预期为20年的组件(特别是由塑料制成)的不利影响。这需要更好地表征聚合物,以帮助预测在使用过程中的行为。挑战在于设计了用分析方法支持的有效实验程序,以迅速使用的技术分析呈现材料性能。传统的长期蠕变试验程序过于时间,以适应现行方案。本研究的重点是使用短时间(不到24小时)蠕变测试开发方法,其中播放和分析杨氏模量,时间和温度之间的相互关系。在这种环境中施加的蠕变测试技术已经发展成为热塑性组分设计的有希望的工具。每个温度的图在温度依赖性换档因子处叠加,以形成乙状样形状的主曲线。 William -Lendel-Ferry(WLF)关系用于计算换档因子。聚碳酸酯(Lexan)是本研究突出的聚合物。对于粘弹性材料,每个负载步骤对最终变形或延伸产生独立贡献。设计了一种被称为温度叠加法的新方法,以获得各种载荷水平的应变温度依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号