首页> 外文会议>National Fluid Mechanics and Fluid Power Conference >FLOW FIELD ANALYSIS OVER AERO-DISC ATTACHED TO BLUNT-NOSED BODY AT MACH 6
【24h】

FLOW FIELD ANALYSIS OVER AERO-DISC ATTACHED TO BLUNT-NOSED BODY AT MACH 6

机译:在Mach 6上附着到钝器的航空盘上的流场分析

获取原文

摘要

Aero- spike attached to a blunt body significantly alters its flow field and influences aerodynamic drag at high speeds. The dynamic pressure in the recirculation area is highly reduced and this leads to the decrease in the aerodynamic drag. Consequently, the geometry of the aero-spike has to be simulated in order to obtain a large conical recirculation region in front of the blunt body to get beneficial drag reduction. Axisymmetric compressible Navier-Stokes equations are solved using a finite volume discretization in conjunction with a multistage Runge-Kutta time stepping scheme. The effect of the various types of aerospike configurations on the reduction of aerodynamic drag is evaluated numerically at Mach 6 at a zero angle of attack. The computed density contours agree well with the schlieren pictures. Additional modification to the tip of the spike to get the different type of flow field such as formation of shock wave, separation area and reattachment point are examined, including a conical spike, flatdisk spike and hemispherical disk spike attached to the blunt body. Shock polar is obtained using the velocity vector plot. The bow shock distance ahead of the hemispherical and flat-disc is compared with the analytical solution and good agreement found between them. The influence of the shock wave generated from the spike, interacting with the reattachment shock is used to understand the cause of drag reduction.
机译:连接到钝器的航空尖峰显着改变其流场,并影响高速的空气动力学阻力。再循环区域中的动态压力高度降低,这导致空气动力学阻力下降。因此,必须模拟航空峰值的几何形状,以便在钝体前面获得大的锥形再循环区域以获得有益阻力。使用有限体积离散化结合多级径g-Kutta时间步进方案来解决轴对称可压缩Navier-Stokes方程。在Mach 6处以零攻角在数值上以数值方式评估各种类型的Aerospike配置对空气动力学阻力的影响。计算的密度轮廓与Schlieren图片很好。对尖端进行额外的修改以获得不同类型的流场,例如诸如冲击波的形成,分离区域和重新连接点,包括连接到钝体的锥形尖峰,扁平峰值峰值和半球形盘钉。使用速度矢量图获得冲击极性。与它们之间的分析解决方案进行比较了半球形和扁平盘前面的弓形冲击距离。从钉子产生的冲击波的影响,使用与重新连接冲击相互作用来了解减阻的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号