首页> 外文会议>International Conference on Ocean, Offshore and Arctic Engineering >STUDY ON FORMATION AND DISSOCIATION OF METHANE HYDRATE IN SANDSTONE USING LOW-FIELD NUCLEAR MAGNETIC RESONANCE TECHNOLOGY
【24h】

STUDY ON FORMATION AND DISSOCIATION OF METHANE HYDRATE IN SANDSTONE USING LOW-FIELD NUCLEAR MAGNETIC RESONANCE TECHNOLOGY

机译:使用低场核磁共振技术研究砂岩中甲烷水合物的形成和解离

获取原文

摘要

Natural gas hydrate, as an unconventional resource, has been attracting increasing attention. Understanding the characteristics of methane hydrate formation and dissociation in porous media is important for developing gas hydrate-bearing reservoirs. This work discusses the use of low-field nuclear magnetic resonance (LF-NMR) technology to investigate the formation and dissociation of methane hydrate in the sandstone. In this work, an experimental assembly wherein methane hydrate can form and dissociate, is used to conduct LF-NMR measurements. LF-NMR. as a noninvasive measurement technology, combines the transverse relaxation time (T_2) measurement with the magnetic resonance imaging (MRI).T_2 measurements can explore the characteristics of methane hydrate formation and dissociation in core samples from a pore-scale perspective. MRI can display the spatial distribution of water from a core-scale perspective. The excess-gas method and the excess-water method are successively applied to form methane hydrate, and depressurization is applied to dissociate methane hydrate in the laboratory. The characteristics of methane hydrate formation and dissociation is studied in the sandstone. Experimental results show that the signal intensity of short T_2 and long T_2 decreases simultaneously in the process of the methane hydrate formation using the excess-gas method, indicating that methane hydrate is formed in both small and large pores. When using the excess-water method, the signal intensity of long T_2 decreases, and the signal intensity of short T_2 increases in the process of the methane hydrate formation, indicating that methane hydrate is mainly formed in large pores. Methane hydrate is dissociated simultaneously in both small and large pores when using the depressurization method. Water content in small pores gradually increases. Capillary pressure causes some water to remain in the core samples following dissociation. Water content in large pores decreases initially and then increases during depressurization. In the early stages of depressurization, more water leaves large pores than is generated by hydrate dissociation. In the later stages of depressurization, less water leaves the large pores than is generated by hydrate dissociation. This study may inspire the new understanding on distribution of fluid in sediments during the process of accumulation and exploitation of natural gas hydrates.
机译:天然气水合物,作为一个非常规资源,一直吸引了不断的关注。了解多孔介质中甲烷水合物形成和解离的特征对于开发气体水合物储存器是重要的。该工作探讨了低现场核磁共振(LF-NMR)技术来研究砂岩中甲烷水合物的形成和解离。在这项工作中,使用其中甲烷水合物可以形成和解离的实验组件来进行LF-NMR测量。 LF-NMR。作为非侵入性测量技术,将横向弛豫时间(T_2)测量与磁共振成像(MRI)相结合,可以探讨孔隙尺度的透视图中甲烷水合物形成和核心样品中解离的特征。 MRI可以从核心规模的角度显示水的空间分布。过量的气体方法和过量水方法连续地施加形成甲烷水合物,并将减压施加以在实验室中解离甲烷水合物。在砂岩中研究了甲烷水合物形成和解离的特征。实验结果表明,使用过量气体方法在甲烷水合物形成过程中,短T_2和LONG T_2的信号强度同时降低,表明甲烷水合物在小孔隙中形成。当使用过量水方法时,长T_2的信号强度降低,并且短T_2的信号强度在甲烷水合物形成过程中增加,表明甲烷水合物主要形成大孔。使用减压法,甲烷水合物在小孔隙中同时解离。小孔中的水含量逐渐增加。在解离后,毛细管压力导致一些水留在核心样品中。大孔中的水含量最初降低,然后在减压期间增加。在减压的早期阶段,更多的水叶大于通过水合物解离产生的大孔。在后期减压的阶段,较少的水留下大的孔而不是通过水合物解离产生的孔。本研究可以激发关于天然气水合物的积累和开发过程中沉积物中液体分布的新认识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号