首页> 外文会议>SPIE Conference on Microfluidics, BioMEMS, and Medical Microsystems >Micro-engineering a platform to reconstruct physiology and functionality of the human brain microvasculature in vitro
【24h】

Micro-engineering a platform to reconstruct physiology and functionality of the human brain microvasculature in vitro

机译:微型工程平台重建人脑微血管系统的生理学和功能

获取原文

摘要

A predominant unsolved challenge in tissue engineering is the need of a robust technique for producing vascular networks, particularly when modeling human brain tissue. The availability of reliable in vitro human brain microvasculature models would advance our understanding of its function and would provide a platform for high-throughput drug screening. Current strategies for modeling vascularized brain tissue suffer from limitations such as (1) culturing non-human cell lines, (2) limited multi-cell co-culture, and (3) the effects of neighboring physiologically unrealistic rigid polymeric surfaces, such as solid membranes. We demonstrate a new micro-engineered platform that can address these shortcomings. Specifically, we have designed and prototyped a molding system to enable the precise casting of ~100 μm-diameter coaxial hydrogel structures laden with the requisite cells to mimic a vascular lumen. Here we demonstrate that a fine wire with diameter ~130 μm or a needle with outer diameter ~300 μm can be used as a temporary mold insert, and agarose-collagen composite matrix can be cast around these inserts and thermally gelled. When the wire or needle is retracted under the precise positional control afforded by our system, a microchannel is formed which is then seeded with human microvascular endothelial cells. After seven days of culture these cells produce an apparently confluent monolayer on the channel walls. In principle, this platform could be used to create multilayered cellular structures. By arranging a fine wire and a hollow needle coaxially, three distinct zones could be defined in the model: first, the bulk gel surrounding the needle; then, after needle retraction, a cylindrical shell of matrix; and finally, after retraction of the wire, a lumen. Each zone could be independently cell-seeded. To this end, we have also successfully 3D cultured human astrocytes and SY5Y glial cells in our agarose-collagen matrix. Our approach ultimately promises scalabl
机译:组织工程中的主要取消解决挑战是需要一种生产血管网络的鲁棒技术,特别是在造型的人脑组织时。可靠的体外人脑微血管结构模型的可用性将推进对其功能的理解,并为高通量药物筛查提供平台。模拟血管化脑组织的目的策略患有(1)培养非人体细胞系,(2)有限的多细胞共同培养,(3)邻近生理学上不切实际的刚性聚合物表面的影响,例如固体膜。我们展示了一个可以解决这些缺点的新型微型工程平台。具体而言,我们已经设计和原型设计了一种模塑系统,以使〜100μm直径的同轴水凝胶结构的精确浇注载有必要的细胞以模仿血管内腔。在这里,我们证明了具有直径〜130μm或具有外径〜300μm的针的细线可以用作临时模具插入物,并且可以围绕这些插入物浇铸琼脂糖 - 胶原复合基质并热凝胶化。当导线或针在由我们的系统提供的精确定位对照下缩回时,形成微通道,然后用人的微血管内皮细胞接种。在培养七天之后,这些细胞在通道壁上产生明显融合的单层。原则上,该平台可用于创建多层蜂窝结构。通过同轴地布置精细导线和中空针,在模型中可以定义三个不同的区域:首先,针围绕针的散装凝胶;然后,在针缩回后,矩阵的圆柱形壳;最后,在缩回电线后,一个内腔。每个区域都可以独立细胞播种。为此,我们还成功地在琼脂糖胶原基质中成功了3D培养的人体星形胶质细胞和Sy5Y胶质细胞。我们的方法最终承诺缩放

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号