首页> 外文会议>SPIE Conference on Microfluidics, BioMEMS, and Medical Microsystems >From Bioseparation to 'Artificial Micro Organs' — microfluidic chipbased particle manipulation techniques
【24h】

From Bioseparation to 'Artificial Micro Organs' — microfluidic chipbased particle manipulation techniques

机译:从生物分离到“人造微器官” - 微流体芯片串行粒子操纵技术

获取原文

摘要

Microfluidic device technology provides unique physical phenomena which are not available in the macroscopic world. These may be exploited towards a diverse array of applications in biotechnology and biomedicine ranging from bioseparation of particulate samples to the assembly of cells into structures that resemble the smallest functional unit of an organ. In this paper a general overview of chip-based particle manipulation and separation is given. In the state of the art electric, magnetic, optical and gravitational field effects are utilized. Also, mechanical obstacles often in combination with force fields and laminar flow are employed to achieve separation of particles or molecules.In addition, three applications based on dielectrophoretic forces for particle manipulation in microfluidic systems are discussed in more detail. Firstly, a virus assay is demonstrated. There, antibody-loaded microbeads are used to bind virus particles from a sample and subsequently are accumulated to form a pico-liter sized aggregate located at a predefined position in the chip thus enabling highly sensitive fluorescence detection. Secondly, subcellular fractionation of mitochondria from cell homogenate yields pure samples as was demonstrated by Western Blot and 2D PAGE analysis. Robust long-term operation with complex cell homogenate samples while avoiding electrode fouling is achieved by a set of dedicated technical means. Finally, a chip intended for the dielectrophoretic assembly of hepatocytes and endothelial cells into a structure resembling a liver sinusoid is presented. Such "artificial micro organs" are envisioned as substance screening test systems providing significantly higher predictability with respect to the in vivo response towards a substance under test.
机译:微流体设备技术提供独特的物理现象,在宏观世界中不可用。这些可以朝向生物技术和生物医学中的各种应用阵列,从颗粒状样品的生物分离到细胞组装到类似于器官的最小功能单元的结构中。在本文中,给出了芯片的粒子操纵和分离的一般概述。在最先进的状态下,利用磁,光学和重力场效应。而且,使用与力场和层流相结合的机械障碍物用于实现颗粒或分子的分离。另外,更详细地讨论了基于微流体系统中粒子操纵的基于粒子操纵的三种应用。首先,证明病毒测定。在那里,负载抗体的微珠用于与样品结合病毒颗粒,随后累积以形成位于芯片中预定位置的微微升尺寸的聚集体,从而能够高敏感的荧光检测。其次,来自细胞匀浆的线粒体的亚细胞分级产生纯样品,如通过蛋白质印迹和2D页面分析所证明的。通过一组专用技术手段实现具有复杂细胞匀浆样本的鲁棒的长期操作,同时避免电极污垢。最后,介绍肝细胞和内皮细胞介电电泳组合的芯片,并呈现成类似于肝脏正弦骨的结构。这种“人造微动器官”被设想为物质筛选测试系统,相对于对被测物质的体内反应提供明显更高的可预测性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号