首页> 外文会议>Symposium on the Application of Geophysics to Engineering and Environmental Problems >RELAXATION DURING PULSE EFFECTS FOR ADIABATIC PULSES IN SURFACE HMR
【24h】

RELAXATION DURING PULSE EFFECTS FOR ADIABATIC PULSES IN SURFACE HMR

机译:在表面HMR中的绝热脉冲脉冲效应期间放松

获取原文

摘要

To improve the signal to noise ratio of the surface nuclear magnetic resonance (NMR) technique recent work has focused on the development of an alternative transmit scheme employing an adiabatic excitation pulse (Grunewald et al., 2016). The use an adiabatic pulse requires that the excitation modeling in the standard forward model be altered. One factor impacting the accuracy of excitation modeling is relaxation during pulse (RDP) effects. A robust approach to deal with RDP has been developed in the context of an on-resonance pulse (Walbrecker et al., 2009), but in order to ensure reliable water content estimates we must also understand how RDP impacts an adiabatic pulse. A sensitivity analysis is presented to investigate how RDP effects an adiabatic pulse and whether the existing approach to accommodate for RDP is effective for an adiabatic pulse. The magnitude of RDP during an adiabatic pulse is observed to depend strongly on the underlying relaxation mechanism controlling T2* (compared to an on-resonance pulse); i.e. whether T2* is controlled by T2 processes (such as surface or bulk relaxation) or by background magnetic field inhomogeneity related dephasing. Each scenario leads to very different magnitude transverse magnetizations. The challenge is that given only free induction decay measurements (the standard measurement in surface NMR) the two scenarios cannot be differentiated. As such, water content estimates produced using adiabatic pulses may correspond to larger uncertainties due to potential modeling errors associated with incomplete knowledge about which scenario is present. The standard approach to compensate for relaxation during pulse effects is demonstrated to produce biased results using adiabatic pulses in the fast to intermediate T2* range (<~few 100 ms).
机译:为了改善表面核磁共振(NMR)技术的信噪比最近的工作已经集中于开发采用绝热励磁脉冲的替代传输方案(Grunewald等,2016)。使用绝热脉冲要求改变标准前向模型中的激励建模。影响励磁建模精度的一个因素是在脉冲(RDP)效应期间的弛豫。在谐振脉冲的背景下,已经开发了一种处理RDP的强大方法(Walbrecker等,2009),但为了确保可靠的水量估计,我们还必须了解RDP如何影响绝热脉冲。提出了一种灵敏度分析来研究RDP如何影响绝热脉冲以及适应RDP的现有方法是否适用于绝热脉冲。观察到绝热脉冲期间RDP的幅度强烈地依赖于控制T2 *的底层弛豫机构(与谐振脉冲相比);即T2 *是否由T2过程(如表面或散装弛豫)或通过背景磁场不均匀相关的除去。每个场景都会导致非常不同的幅度横向磁化。挑战是,仅给出自由诱导衰变测量(表面NMR的标准测量),这两个方案无法区分。因此,使用绝热脉冲产生的水含量估计可以对应于由于与存在的情况有关的不完整知识相关的潜在建模误差,对应于较大的不确定性。在脉冲效应期间补偿弛豫的标准方法被证明使用快速到中间T2 *范围(<〜〜〜毫秒)中的绝热脉冲产生偏置结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号