首页> 外文会议>Symposium on the Application of Geophysics to Engineering and Environmental Problems >ESTIMATING DIELECTRIC PERMITTIVITY VARIATIONS USING TOMOGRAPHIC GPR DATA THROUGH ENTROPY-BAYESIAN INVERSION INTEGRATED WITH EFFICIENT SAMPLING AND PILOT POINTS
【24h】

ESTIMATING DIELECTRIC PERMITTIVITY VARIATIONS USING TOMOGRAPHIC GPR DATA THROUGH ENTROPY-BAYESIAN INVERSION INTEGRATED WITH EFFICIENT SAMPLING AND PILOT POINTS

机译:通过熵 - 贝叶斯反演与有效采样和试验点集成的熵 - 贝叶斯反演估算介电介电常数变化

获取原文

摘要

Accurate estimation of soil moisture is critical in vadose zone studies. Although many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniqueness and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability distribution functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSIM) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.
机译:土壤水分的准确估计是包气带的研究是至关重要的。虽然许多研究已经说明GPR断层数据的承诺和值用于估计土壤湿度和相关联的变化,挑战中的GPR断层数据以这样的方式反转仍然存在量化输入和预测的不确定性,包含多种数据类型,把手非唯一并收集了一系列非线性和荣誉延时断层。为了应对这些挑战,我们开发了一个最小相对熵(MRE)-Bayesian基于逆建模框架,非主观定义先验概率,合并来自多个来源的信息,并量化不确定性。该框架使我们能够在断层图像内分布式导频点位置,以及空间相关性范围来估计介电常数。在反演框架,MRE首先用于基于从直射线GPR反演得到先验信息介电常数的派生先验概率分布函数(pdf)。然后将概率分布使用准蒙特卡洛(QMC)的方式采样,样本集合到该构造一个高分辨的介电常数/速度场进行评估具有弯曲射线GPR向前顺序高斯模拟(SGSIM)算法提供输入模型。所述似然函数被计算为不称职的函数,以及使用高斯核被构造后的PDF文件。随后的时间推移的数据集反演组合从先前反转(作为存储器功能)以及新数据的贝叶斯估计。记忆功能和导频点设计利用状态变量的空间 - 时间相关性的优点。我们首先将反转框架静态合成实施例,然后到时间推移GPR断层数据集在汉福德区在里士满,WA进行的动态试验过程中收集的。我们表明,MRE贝叶斯反转使我们能够合并各种数据类型,不确定性进行量化,评估非线性模型,并产生比直射线的反转更详细和更好的解决估计;因此,它具有提高跨井筒介电常数和土壤含水量的估计和更准确地监测他们的时间动态的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号