首页> 外文会议>International Conference on Parallel Computing >Parallel Machines and the 'Digital Brain' - An Intricate Extrapolation on Occasion of JvN's 100-th Birthday
【24h】

Parallel Machines and the 'Digital Brain' - An Intricate Extrapolation on Occasion of JvN's 100-th Birthday

机译:平行机器和“数字大脑” - 有时的JVN 100年前的复杂外推

获取原文

摘要

On 28 December 2003, the scientific community will celebrate the 100-th anniversary of John von Neumann's birthday. On this occasion, we are reminded of his achievements as outstanding mathematician and creator of Game Theory, but even more that he laid the very conceptional foundations of the digital computer. His concept had the fortune - contrary to Konrad Zuse's in Germany - that the transistor was invented in 1947, just when JvN wrote his famous reports on the digital computer, at Bell Labs thus giving rise to the extraordinary technological development of microelectronics pushed further by other inventions like photolithography and integrated circuits in the years to come. Since decades, the exponential growth of the power of microchips - every 18 months, the integration density of transistors on the chips is doubling -is steering the also exponential growth of computer power. The top computers have surpassed the teraflops level by far today targeting towards 100 teraflops or even petaflops. The computer has become ubiquitous, and protagonists of robotics and artificial intelligence are tempted to attribute to it omnipotent capabilities which will lead to autonomous "humanoids" (Moravec, Kurzweil) on the one hand and threatening horror scenarios on the other (Joy). The predictions of the semiconductor industry tell us that "Moore's Law" describing the exponential evolution in microelectronics might remain valid for other 10 to 15 years. Beyond Moore's Law, quantum effects will definitely end the orderly functioning of "classical" circuits. In 1982, Richard Feyn-man pointed out that certain quantum mechanical systems could not be simulated efficiently on a "classical" digital computer how powerful it may evolve. This led to speculations that computation in general could be done, in principle and even more efficiently, if a novel computer could make thorough use of quantum effects, thus providing a challenging option for parallel computing by exploiting the exponential speedup through quantum parallelism. Peter Shor's factorization algorithm of 1994 showed that the quantum computer is capable to solve NP-hard problems efficiently. Experimentalists work on different physical concepts to realize quantum computation; for instance, quantum dots, trapped ions, superconducting devices, and NMR technology have been shown to provide the principles and the technology to build quantum computers.
机译:2003年12月28日,科学界将迎来约翰·冯·诺依曼诞辰100周年。在此之际,我们提醒他的成就杰出的数学家和博弈论的创造者,但更是奠定了他数字计算机的非常概念性基础。他的观念有财富 - 违背康拉德楚泽在德国 - 该晶体管是在1947年发明的,只是当JvN写他的数字计算机上著名的报道,因此贝尔实验室引起微电子非凡的技术发展其他进一步推像光刻发明和集成电路在今后的岁月里。由于几十年来,微芯片的功率的指数式增长 - 每18个月,晶体管的芯片上的集成密度要增加一倍的-is转向计算机电源的也呈指数增长。顶部计算机已超过今天为止万亿次级别对100个万亿次浮点运算定位,甚至千万亿次。计算机已经变得无处不在,和机器人技术和人工智能的主角都禁不住属性,它无所不能的能力,这将导致自主的“类人机器人”(莫拉维克,库兹威尔),一方面和其他(乐)威胁的恐怖场景。半导体产业的预测告诉我们,“摩尔定律”描述微电子指数演变可能仍然有效等10至15年。超越摩尔定律,量子效应肯定会结束的“经典”电路有序的运作。 1982年,理查德·Feyn人指出,某些量子力学系统无法有效地一个“经典”数字计算机多么强大可能演变上模拟。这导致了投机,在通用计算可以做的,在原则上,甚至更有效地,如果一个新的计算机可以使彻底利​​用量子效应,从而通过量子并行开发的指数加速提供并行计算的一个具有挑战性的选择。彼得·肖尔的1994年分解算法表明,量子计算机能够有效地解决NP难的问题。实验者在不同的物理概念,努力实现量子计算;例如,量子点,俘获离子,超导装置和NMR技术已经显示出提供的原理和技术建立量子计算机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号